DNN vs. brain and behavior

Would like to add new papers or update existing ones? Click here. We will update the website regulary.

This list is the updated (but surely not complete!) literature collection by Anna Wolff and Martin Hebart (ViCCo Group).


Title Authors Year Journal Link Keywords
Sharpening of Hierarchical Visual Feature Representations of Blurred Images Abdelhack, Mohamed; Kamitani, Yukiyasu 2018 eNeuro 10.1523/ENEURO.0443-17.2018 brain_imaging; fMRI; visual
Conflicting Bottom-up and Top-down Signals during Misrecognition of Visual Objects Abdelhack, Mohamed; Kamitani, Yukiyasu 2019 BioRxiv 10.1101/521252 brain_imaging; fMRI; human; visual
Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes Antolík, Ján; Hofer, Sonja B.; Bednar, James A.; Mrsic-Flogel, Thomas D. 2016 PLoS computational biology 10.1371/journal.pcbi.1004927 brain_imaging; electrophysiology; rodent; visual
What deep learning can tell us about higher cognitive functions like mindreading? Aru, Jaan; Vicente, Raul 2018 arXiv 1803.10470v2 review
Training for object recognition with increasing spatial frequency: A comparison of deep learning with human vision Avberšek, Lev Kiar; Zeman, Astrid A.; Op de Beeck, Hans 2021 BioRxiv 10.1101/2021.01.24.427905 brain_imaging; human; visual
Deep convolutional networks do not classify based on global object shape Baker, Nicholas; Lu, Hongjing; Erlikhman, Gennady; Kellman, Philip J. 2018 PLoS computational biology 10.1371/journal.pcbi.1006613 behavior; human; visual
The functional specialization of visual cortex emerges from training parallel pathways with self-supervised predictive learning Bakhtiari, Shahab; Mineault, Patrick; Lillicrap, Tim; Pack, Christopher C.; Richards, Blake A. 2021 BioRxiv 10.1101/2021.06.18.448989v2 brain_imaging; rodent; visual; electrophysiology
Vector-based navigation using grid-like representations in artificial agents Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy P.; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J.; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan 2018 Nature 10.1038/s41586-018-0102-6 brain_imaging; electrophysiology; rodent; visual
The temporal evolution of conceptual object representations revealed through models of behavior, semantics and deep neural networks Bankson, B. B.; Hebart, Martin N.; Groen, Iris I. A.; Baker, Chris I. 2018 NeuroImage 10.1016/j.neuroimage.2018.05.037 brain_imaging; MEG; semantic; visual
Analyzing biological and artificial neural networks: challenges with opportunities for synergy? Barrett, David G. T.; Morcos, Ari S.; Macke, Jakob H. 2018 Current Opinion in Neurobiology 1810.13373v1 review
Neural Population Control via Deep ANN Image Synthesis Bashivan, Pouya; Kar, Kohitij; DiCarlo, James J. 2018 Cognitive Computational Neuroscience brain_imaging; electrophysiology; monkey; visual
Neural population control via deep image synthesis Bashivan, Pouya; Kar, Kohitij; DiCarlo, James J. 2019 Science 10.1126/science.aav9436 brain_imaging; electrophysiology; monkey; visual
Modeling Human Categorization of Natural Images Using Deep Feature Representations Battleday, Ruairidh M.; Peterson, Joshua C.; Griffiths, Thomas L. 2017 arXiv 1711.04855v1 behavior; human; visual
Capturing human categorization of natural images by combining deep networks and cognitive models Battleday, Ruairidh M.; Peterson, Joshua C.; Griffiths, Thomas L. 2020 Nature Communications 10.1038/s41467-020-18946-z behavior; human; visual
From convolutional neural networks to models of higher-level cognition (and back again) Battleday, Ruairidh M.; Peterson, Joshua C.; Griffiths, Thomas L. 2021 Annals of the New York Academy of Sciences 10.1111/nyas.14593 human; review; visual
Minimal videos: Trade-off between spatial and temporal information in human and machine vision Ben-Yosef, Guy; Kreiman, Gabriel; Ullman, Shimon 2020 Cognition 10.1016/j.cognition.2020.104263 behavior; human; visual
Computational mechanisms underlying cortical responses to the affordance properties of visual scenes Bonner, Michael F.; Epstein, Russell A. 2018 PLoS computational biology 10.1371/journal.pcbi.1006111 brain_imaging; fMRI; visual
Reinforcement Learning, Fast and Slow Botvinick, Matthew M.; Ritter, Sam; Wang, Jane X.; Kurth-Nelson, Zeb; Blundell, Charles; Hassabis, Demis 2019 Trends in Cognitive Sciences 10.1016/j.tics.2019.02.006 learning; review
Object-scene conceptual regularities reveal fundamental differences between 3 biological and artificial object vision Bracci, Stefania; Mraz, Jakob; Zeman, Astrid A.; Leys, Gaëlle; Op de Beeck, Hans 2021 BioRxiv 10.1101/2021.08.13.456197 brain_imaging; fMRI; human; visual
The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks Bracci, Stefania; Ritchie, J. Brendan; Kalfas, Ioannis; Op de Beeck, Hans 2019 Journal of Neuroscience 10.1523/JNEUROSCI.1714-18.2019 brain_imaging; fMRI; human; visual
Learning divisive normalization in primary visual cortex Burg, Max F.; Cadena, Santiago A.; Denfield, George H.; Walker, Edgar Y.; Tolias, Andreas S.; Bethge, Matthias; Ecker, Alexander S. 2021 PLoS computational biology 10.1371/journal.pcbi.1009028 brain_imaging; electrophysiology; monkey; visual
Deep convolutional models improve predictions of macaque V1 responses to natural images Cadena, Santiago A.; Denfield, George H.; Walker, Edgar Y.; Gatys, Leon A.; Tolias, Andreas S.; Bethge, Matthias; Ecker, Alexander S. 2019 PLoS computational biology 10.1371/journal.pcbi.1006897 brain_imaging; electrophysiology; monkey; visual
How well do deep neural networks trained on object recognition characterize the mouse visual system? Cadena, Santiago A.; Sinz, Fabian H.; Muhammad, Taliah; Froudarakis, Emmanouil; Cobos, Erick; Walker, Edgar Y.; Reimer, Jake; Bethge, Matthias; Tolias, Andreas S.; Ecker, Alexander S. 2019 NeurIPS workshop Neuro-AI brain_imaging; electrophysiology; rodent; visual
Deep neural networks rival the representation of primate IT cortex for core visual object recognition Cadieu, Charles F.; Hong, Ha; Yamins, Daniel L. K.; Pinto, Nicolas; Ardila, Diego; Solomon, Ethan A.; Majaj, Najib J.; DiCarlo, James J. 2014 PLoS computational biology 10.1371/journal.pcbi.1003963 brain_imaging; electrophysiology; monkey; visual
BOLD5000, a public fMRI dataset while viewing 5000 visual images Chang, Nadine; Pyles, John A.; Marcus, Austin; Gupta, Abhinav; Tarr, Michael J.; Aminoff, Elissa M. 2019 Scientific Data 10.1038/s41597-019-0052-3 brain_imaging; fMRI; human; semantic; visual
The Roles of Statistics in Human Neuroscience Chén, Oliver Y. 2019 Brain Sciences 10.3390/brainsci9080194 review
DNNBrain: A Unifying Toolbox for Mapping Deep Neural Networks and Brains Chen, Xiayu; Zhou, Ming; Gong, Zhengxin; Xu, Wei; Liu, Xingyu; Huang, Taicheng; Zhen, Zonglei; Liu, Jia 2020 Frontiers in Computational Neuroscience 10.3389/fncom.2020.580632 brain_imaging; fMRI; human; visual
Models of primate ventral stream that categorize and visualize images Christensen, Elijah D.; Zylberberg, Joel 2020 BioRxiv 10.1101/2020.02.21.958488 brain_imaging; electrophysiology; monkey; visual
Deep Neural Networks as Scientific Models Cichy, Radoslaw M.; Kaiser, Daniel 2019 Trends in Cognitive Sciences 10.1016/j.tics.2019.01.009 review
Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence Cichy, Radoslaw M.; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude 2016 Scientific Reports 10.1038/srep27755 brain_imaging; fMRI; human; MEG; visual
Neural dynamics of real-world object vision that guide behaviour Cichy, Radoslaw M.; Kriegeskorte, Nikolaus; Jozwik, Kamila M.; van den Bosch, Jasper J. F.; Charest, Ian 2017 BioRxiv 10.1101/147298 brain_imaging; fMRI; human; MEG; semantic; visual
Human perception in computer vision Dekel, Ron 2017 arXiv 1701.04674v1 behavior; human; visual
Integrated deep visual and semantic attractor neural networks predict fMRI pattern-information along the ventral object processing pathway Devereux, Barry J.; Clarke, Alex; Tyler, Lorraine K. 2018 Scientific Reports 10.1038/s41598-018-28865-1 brain_imaging; fMRI; semantic; visual
Disentangled behavioral representations Dezfouli, A., Ashtiani, H., Ghattas, O., Nock, R., Dayan, P., & Ong, C. S. 2019 BioRxiv 10.1101/658252 behavior; human; visual
Models that learn how humans learn: The case of decision-making and its disorders Dezfouli, Amir; Griffiths, Kristi; Ramos, Fabio; Dayan, Peter; Balleine, Bernard W. 2019 PLoS computational biology 10.1371/journal.pcbi.1006903 behavior; human; visual
Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models Dezfouli, Amir; Morris, Richard; Ramos, Fabio; Dayan, Peter; Balleine, Bernard W. 2018 BioRxiv 10.1101/328849 behavior; brain_imaging; fMRI; human; visual
Human and DNN Classification Performance on Images With Quality Distortions: A Comparative Study Dodge, Samuel; Karam, Lina 2019 Association for Computing Machinery 10.1145/3306241 behavior; human; visual
Crowding reveals fundamental differences in local vs. global processing in humans and machines Doerig, Adrien; Bornet, A.; Choung, O. H.; Herzog, Michael H. 2020 Vision Research 10.1016/j.visres.2019.12.006 behavior; human; visual
Capsule Networks as Recurrent Models ofGrouping and Segmentation Doerig, Adrien; Schmittwilken, Lynn; Sayim, Bilge; Manassi, Mauro; Herzog, Michael H. 2020 BioRxiv 10.1101/747394 behavior; human; visual
What do adversarial images tell us about human vision? Dujmović, Marin; Malhotra, Gaurav; Bowers, Jeffrey S. 2020 eLife 10.7554/eLife.55978 behavior; human; visual
Unveiling functions of the visual cortex using task-specific deep neural networks Dwivedi, Kshitij; Bonner, Michael F.; Cichy, Radoslaw M.; Roig, Gemma 2021 BioRxiv 10.1101/2020.11.27.401380 brain_imaging; fMRI; human; semantic; visual
Unraveling Representations in Scene-selective Brain Regions Using Scene-Parsing Deep Neural Networks Dwivedi, Kshitij; Cichy, Radoslaw M.; Roig, Gemma 2020 Journal of Cognitive Neuroscience 10.1162/jocn\_a\_01624 brain_imaging; fMRI; human; visual
Task-specific vision models explain task-specific areas of visual cortex Dwivedi, Kshitij; Roig, Gemma 2018 BioRxiv 10.1101/402735 brain_imaging; visual
How Deep is the Feature Analysis underlying Rapid Visual Categorization? Eberhardt, Sven; Cader, Jonah; Serre, Thomas 2016 Advances in Neural Information Processing Systems 1606.01167v1 behavior; human; visual
A rotation-equivariant convolutional neural network model of primary visual cortex Ecker, Alexander S.; Sinz, Fabian H.; Froudarakis, Emmanouil; Fahey, Paul G.; Cadena, Santiago A.; Walker, Edgar Y.; Cobos, Erick; Reimer, Jacob; Tolias, Andreas S.; Bethge, Matthias 2018 arXiv 1809.10504v1 brain_imaging; electrophysiology; rodent; visual
Seeing it all: Convolutional network layers map the function of the human visual system Eickenberg, Michael; Gramfort, Alexandre; Varoquaux, Gaël; Thirion, Bertrand 2017 NeuroImage 10.1016/j.neuroimage.2016.10.001 brain_imaging; fMRI; human; visual
Adversarial Examples that Fool both Computer Vision and Time-Limited Humans Elsayed, Gamaleldin F.; Shankar, Shreya; Cheung, Brian; Papernot, Nicolas; Kurakin, Alex; Goodfellow, Ian; Sohl-Dickstein, Jascha 2018 arXiv 1802.08195v3 behavior; human; visual
Relating Visual Production and Recognition of Objects in Human Visual Cortex Fan, Judith E.; Wammes, Jeffrey D.; Gunn, Jordan B.; Yamins, Daniel L. K.; Norman, Kenneth A.; Turk-Browne, Nicholas B. 2020 Journal of Neuroscience 10.1523/JNEUROSCI.1843-19.2019 brain_imaging; fMRI; human; visual
Common Object Representations for Visual Production and Recognition Fan, Judith E.; Yamins, Daniel L. K.; Turk-Browne, Nicholas B. 2018 Cognitive Science 10.1111/cogs.12676 behavior; human; visual
A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi 2016 Scientific Reports 10.1038/srep25025 behavior; human; monkey; visual
Training neural networks to mimic the brain improves object recognition performance Federer, Callie; Xu, Haoyan; Fyshe, Alona; Zylberberg, Joel 2020 arXiv 1905.10679v2 brain_imaging; electrophysiology; human; monkey; visual
Comparing continual task learning in minds and machines Flesch, Timo; Balaguer, Jan; Dekker, Ronald; Nili, Hamed; Summerfield, Christopher 2018 Proceedings of the National Academy of Sciences 10.1073/pnas.1800755115 human; learning; visual
Using human brain activity to guide machine learning Fong, Ruth C.; Scheirer, Walter J.; Cox, David D. 2018 Scientific Reports 10.1038/s41598-018-23618-6 brain_imaging; fMRI; human; visual
Constrained sampling from deep generative image models reveals mechanisms of human target detection Fruend, Ingo 2020 Journal of Vision 10.1167/jov.20.7.32 behavior; human; visual
Human sensitivity to perturbations constrained by a model of the natural image manifold Fruend, Ingo; Stalker, Elee 2018 Journal of Vision 10.1167/18.11.20 behavior; human; visual
Five points to check when comparing visual perception in humans and machines Funke, Christina M.; Borowski, Judy; Stosio, Karolina; Brendel, Wieland; Wallis, Thomas S. A.; Bethge, Matthias 2021 Journal of Vision 10.1167/jov.21.3.16 behavior; human; visual
Do Primates and Deep Artificial Neural Networks Perform Object Categorization in a Similar Manner? Gangopadhyay, Prabaha; Das, Jhilik 2019 Journal of Neuroscience 10.1523/JNEUROSCI.2458-18.2018 behavior; electrophysiology; fMRI; human; monkey; visual
Visual Object Recognition: Do We (Finally) Know More Now Than We Did? Gauthier, Isabel; Tarr, Michael J. 2016 Annual Review of Vision Science 10.1146/annurev-vision-111815-114621 review; visual
Comparing deep neural networks against humans: object recognition when the signal gets weaker Geirhos, Robert; Janssen, David H. J.; Schütt, Heiko H.; Rauber, Jonas; Bethge, Matthias; Wichmann, Felix A. 2017 arXiv 1706.06969v2 behavior; human; visual
Generalisation in humans and deep neural networks Geirhos, Robert; Medina Temme, Carlos R.; Rauber, Jonas; Schütt, Heiko H.; Bethge, Matthias; Wichmann, Felix A. 2018 arXiv 1808.08750v3 behavior; human; visual
Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency Geirhos, Robert; Meding, Kristof; Wichmann, Felix A. 2020 arXiv 2006.16736v3 behavior; human; visual
Partial success in closing the gap between human and machine vision Geirhos, Robert; Narayanappa, Kantharaju; Mitzkus, Benjamin; Thieringer, Tizian; Bethge, Matthias; Wichmann, Felix A.; Brendel, Wieland 2021 arXiv 2106.07411v1 brain_imaging; human; visual
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness Geirhos, Robert; Rubisch, Patricia; Michaelis, Claudio; Bethge, Matthias; Wichmann, Felix A.; Brendel, Wieland 2018 arXiv 1811.12231v2 behavior; human; visual
Feedforward object-vision models only tolerate small image variations compared to human Ghodrati, Masoud; Farzmahdi, Amirhossein; Rajaei, Karim; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi 2014 Frontiers in Computational Neuroscience 10.3389/fncom.2014.00074 brain_imaging; electrophysiology; monkey; visual
The Roles of Supervised Machine Learning in Systems Neuroscience Glaser, Joshua I.; Benjamin, Ari S.; Farhoodi, Roozbeh; Kording, Konrad P. 2018 arXiv 1805.08239v2 review
Controversial stimuli: Pitting neural networks against each other as models of human cognition Golan, Tal; Raju, Prashant C.; Kriegeskorte, Nikolaus 2020 Proceedings of the National Academy of Sciences of the United States of America 10.1073/pnas.1912334117 behavior; human; review; visual
Visual scenes are categorized by function Greene, Michelle R.; Baldassano, Christopher; Esteva, Andre; Beck, Diane M.; Fei-Fei, Li 2016 Journal of Experimental Psychology 10.1037/xge0000129 behavior; human; visual
Shared spatiotemporal category representations in biological and artificial deep neural networks Greene, Michelle R.; Hansen, Bruce C. 2018 PLoS computational biology 10.1371/journal.pcbi.1006327 brain_imaging; EEG; human; visual
Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior Groen, Iris I. A.; Greene, Michelle R.; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M.; Baker, Chris I. 2018 eLife 10.7554/eLife.32962 brain_imaging; fMRI; human; visual
Convergent evolution of face spaces across human face-selective neuronal groups and deep convolutional networks Grossman, Shany; Gaziv, Guy; Yeagle, Erin M.; Harel, Michal; Mégevand, Pierre; Groppe, David M.; Khuvis, Simon; Herrero, Jose L.; Irani, Michal; Mehta, Ashesh D.; Malach, Rafael 2019 Nature Communications 10.1038/s41467-019-12623-6 behavior; human; visual
Perceptual Dominance in Brief Presentations of Mixed Images: Human Perception vs. Deep Neural Networks Gruber, Liron Z.; Haruvi, Aia; Basri, Ronen; Irani, Michal 2018 Frontiers in Computational Neuroscience 10.3389/fncom.2018.00057 behavior; human; visual
Brains on Beats Güçlü, Umut; Thielen, Jordy; Hanke, Michael; van Gerven, Marcel A. J. 2016 Advances in Neural Information Processing Systems brain_imaging; fMRI; human; visual
Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream Güçlü, Umut; van Gerven, Marcel A. J. 2015 Journal of Neuroscience 10.1523/JNEUROSCI.5023-14.2015 brain_imaging; fMRI; human; visual
Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks Güçlü, Umut; van Gerven, Marcel A. J. 2017 Frontiers in Computational Neuroscience 10.3389/fncom.2017.00007 brain_imaging; fMRI; human
Increasingly complex representations of natural movies across the dorsal stream are shared between subjects Güçlü, Umut; van Gerven, Marcel A. J. 2017 NeuroImage 10.1016/j.neuroimage.2015.12.036 brain_imaging; fMRI; human; visual
Reconstructing perceived faces from brain activations with deep adversarial neural decoding Güçlütürk, Yagmur; Güçlü, Umut; Seeliger, Katja; Bosch, Sander; van Lier, Rob; van Gerven, Marcel A. J. 2017 Advances in Neural Information Processing Systems 30 (NIPS 2017) Pre-Proceedings brain_imaging; fMRI; human; visual
Levels of Representation in a Deep Learning Model of Categorization Guest, Olivia; Love, Bradley C. 2019 BioRxiv 10.1101/626374 behavior; human; visual
Performance-optimized hierarchical models only partially predict neural responses during perceptual decision making Gwilliams, Laura; King, Jean-Rémi 2017 BioRxiv 10.1101/221630 brain_imaging; human; MEG; visual
Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex Han, Kuan; Wen, Haiguang; Shi, Junxing; Lu, Kun-Han; Zhang, Yizhen; Fu, Di; Liu, Zhongming 2019 NeuroImage 10.1016/j.neuroimage.2019.05.039 brain_imaging; fMRI; human; visual
Neuroscience-Inspired Artificial Intelligence Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew M. 2017 Neuron 10.1016/j.neuron.2017.06.011 review
Explicit information for category-orthogonal object properties increases along the ventral stream Hong, Ha; Yamins, Daniel L. K.; Majaj, Najib J.; DiCarlo, James J. 2016 Nature Neuroscience 10.1038/nn.4247 brain_imaging; electrophysiology; monkey; visual
Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features Horikawa, Tomoyasu; Kamitani, Yukiyasu 2017 Frontiers in Computational Neuroscience 10.3389/fncom.2017.00004 brain_imaging; fMRI; human
Generic decoding of seen and imagined objects using hierarchical visual features Horikawa, Tomoyasu; Kamitani, Yukiyasu 2017 Nature Communications 10.1038/ncomms15037 brain_imaging; fMRI; human; visual
The visual and semantic features that predict object memory: Concept property norms for 1,000 object images Hovhannisyan, Mariam; Clarke, Alex; Geib, Benjamin R.; Cicchinelli, Rosalie; Monge, Zachary; Worth, Tory; Szymanski, Amanda; Cabeza, Roberto; Davis, Simon W. 2021 Memory & Cognition 10.3758/s13421-020-01130-5 behavior; human; semantic; visual
Comparing the Visual Representations and Performance of Humans and Deep Neural Networks Jacobs, Robert A.; Bates, Christopher J. 2019 Current Directions in Psychological Science 10.1177/0963721418801342 human; learning; review; visual
Noise-robust recognition of objects by humans and deep neural networks Jang, Hojin; McCormack, Devin; Tong, Frank 2021 BioRxiv 10.1101/2020.08.03.234625 behavior; fMRI; human; visual
Convolutional neural networks trained with a developmental sequence of blurry to clear images reveal core differences between face and object processing Jang, Hojin; Tong, Frank 2021 BioRxiv 10.1101/2021.05.25.444835 behavior; human; visual
General object-based features account for letter perception better than specialized letter features Janini, Daniel; Hamblin, Chris; Deza, Arturo; Konkle, Talia 2021 BioRxiv 10.1101/2021.04.21.440772 behavior; human; semantic; visual
Relating Simple Sentence Representations in Deep Neural Networks and the Brain Jat, Sharmistha; Tang, Hao; Talukdar, Partha; Mitchell, Tom 2019 Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics 10.18653/v1/P19-1507 brain_imaging; human; MEG; semantic
Extracting low-dimensional psychological representations from convolutional neural networks Jha, Aditi; Peterson, Joshua C.; Griffiths, Thomas L. 2020 arXiv 2005.14363v1 behavior; human; review; visual
Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments Jozwik, Kamila M.; Kriegeskorte, Nikolaus; Storrs, Katherine R.; Mur, Marieke 2017 Frontiers in Psychology 10.3389/fpsyg.2017.01726 behavior; human; visual
Face dissimilarity judgements are predicted by representational distance in deep neural networks and principal-component face space Jozwik, Kamila M.; O’Keeffe, Jonathan; Storrs, Katherine R.; Kriegeskorte, Nikolaus 2021 BioRxiv 10.1101/2021.04.09.438859 behavior; human; visual
To find better neural network models of human vision, find better neural network models of primate vision Jozwik, Kamila M.; Schrimpf, Martin; Kanwisher, Nancy; DiCarlo, James J. 2019 BioRxiv 10.1101/688390 brain_imaging; electrophysiology; human; monkey; visual
Shape Selectivity of Middle Superior Temporal Sulcus Body Patch Neurons Kalfas, Ioannis; Kumar, Satwant; Vogels, Rufin 2017 eNeuro 10.1523/ENEURO.0113-17.2017 brain_imaging; electrophysiology; monkey; visual
Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior Kar, Kohitij; Kubilius, Jonas; Schmidt, Kailyn; Issa, Elias B.; DiCarlo, James J. 2019 Nature Neuroscience 10.1038/s41593-019-0392-5 brain_imaging; electrophysiology; monkey; visual
Hard-wired feed-forward visual mechanisms of the brain compensate for affine variations in object recognition Karimi-Rouzbahani, Hamid; Bagheri, Nasour; Ebrahimpour, Reza 2017 Neuroscience 10.1016/j.neuroscience.2017.02.050 brain_imaging; EEG; human; visual
Invariant object recognition is a personalized selection of invariant features in humans, not simply explained by hierarchical feed-forward vision models Karimi-Rouzbahani, Hamid; Bagheri, Nasour; Ebrahimpour, Reza 2017 Scientific Reports 10.1038/s41598-017-13756-8 behavior; human; visual
How do targets, nontargets, and scene context influence real-world object detection? Katti, Harish; Peelen, Marius V.; Arun, Sripati P. 2017 Attention, Perception & Psychophysics 10.3758/s13414-017-1359-9 behavior; human; visual
Machine vision benefits from human contextual expectations Katti, Harish; Peelen, Marius V.; Arun, Sripati P. 2019 Scientific Reports 10.1038/s41598-018-38427-0 behavior; brain_imaging; human; visual
Principles for models of neural information processing Kay, Kendrick N. 2018 NeuroImage 10.1016/j.neuroimage.2017.08.016 review
Deep neural network models of sensory systems: windows onto the role of task constraints Kell, Alexander J. E.; McDermott, Josh H. 2019 Current Opinion in Neurobiology 10.1016/j.conb.2019.02.003 brain_imaging; fMRI; human; review
A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy Kell, Alexander J. E.; Yamins, Daniel L. K.; Shook, Erica N.; Norman-Haignere, Sam V.; McDermott, Josh H. 2018 Neuron 10.1016/j.neuron.2018.03.044 brain_imaging; fMRI; human
Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models Khaligh-Razavi, Seyed-Mahdi; Henriksson, Linda; Kay, Kendrick N.; Kriegeskorte, Nikolaus 2017 Journal of Mathematical Psychology 10.1016/j.jmp.2016.10.007 backpropagation; brain_imaging; fMRI; human
Deep supervised, but not unsupervised, models may explain IT cortical representation Khaligh-Razavi, Seyed-Mahdi; Kriegeskorte, Nikolaus 2014 PLoS computational biology 10.1371/journal.pcbi.1003915 brain_imaging; electrophysiology; monkey; visual
Humans and Deep Networks Largely Agree on Which Kinds of Variation Make Object Recognition Harder Kheradpisheh, Saeed R.; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée 2016 Frontiers in Computational Neuroscience 10.3389/fncom.2016.00092 behavior; human; visual
Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition Kheradpisheh, Saeed R.; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée 2016 Scientific Reports 10.1038/srep32672 behavior; human; visual
Deep neural networks in computational neuroscience Kietzmann, Tim C.; McClure, Patrick; Kriegeskorte, Nikolaus 2019 Oxford Research Encyclopaedia of Neuroscience 10.1093/acrefore/9780190264086.013.46 review
Recurrence is required to capture the representational dynamics of the human visual system Kietzmann, Tim C.; Spoerer, Courtney J.; Sörensen, Lynn K. A.; Cichy, Radoslaw M.; Hauk, Olaf; Kriegeskorte, Nikolaus 2019 Proceedings of the National Academy of Sciences of the United States of America 10.1073/pnas.1905544116 brain_imaging; human; MEG; visual
Neural Networks Trained on Natural Scenes Exhibit Gestalt Closure Kim, Been; Reif, Emily; Wattenberg, Martin; Bengio, Samy; Mozer, Michael C. 2019 arXiv 1903.01069v4 behavior; human; visual
Using deep learning to reveal the neural code for images in primary visual cortex Kindel, William F.; Christensen, Elijah D.; Zylberberg, Joel 2017 arXiv 1706.06208v1 brain_imaging; electrophysiology; monkey; visual
Neural system identification for large populations separating “what” and “where” Klindt, David; Ecker, Alexander S.; Euler, Thomas; Bethge, Matthias 2017 Advances in Neural Information Processing Systems brain_imaging; rodent; visual
Image memorability is predicted at different stages of a convolutional neural network Koch, Griffin E.; Akpan, Essang; Coutanche, Marc N. 2020 BioRxiv 10.1101/834796 behavior; human; visual
Time-resolved correspondences between deep neural network layers and EEG measurements in object processing Kong, Nathan C. L.; Kaneshiro, Blair; Yamins, Daniel L. K.; Norcia, Anthony M. 2020 Vision Research 10.1016/j.visres.2020.04.005 brain_imaging; EEG; human; visual
Beyond category-supervision: instance-level contrastive learning models predict human visual system responses to objects Konkle, Talia; Alvarez, George A. 2021 BioRxiv 10.1101/2021.05.28.446118 brain_imaging; fMRI; human; visual
Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing Kriegeskorte, Nikolaus 2015 Annual Review of Vision Science 10.1146/annurev-vision-082114-035447 review; visual
Cognitive computational neuroscience Kriegeskorte, Nikolaus; Douglas, Pamela K. 2018 Nature Neuroscience 10.1038/s41593-018-0210-5 review
Neural network models and deep learning Kriegeskorte, Nikolaus; Golan, Tal 2019 Current Biology 10.1016/j.cub.2019.02.034 backpropagation
Deep Neural Networks as a Computational Model for Human Shape Sensitivity Kubilius, Jonas; Bracci, Stefania; Op de Beeck, Hans 2016 PLoS computational biology 10.1371/journal.pcbi.1004896 behavior; human; visual
Can deep neural networks rival human ability to generalize in core object recognition Kubilius, Jonas; Kar, Kohitij; Schmidt, Kailyn; DiCarlo, James J. 2018 Cognitive Computational Neuroscience brain_imaging; human; visual
Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs Kubilius, Jonas; Schrimpf, Martin; Kar, Kohitij; Hong, Ha; Majaj, Najib J.; Rajalingham, Rishi; Issa, Elias B.; Bashivan, Pouya; Prescott-Roy, Jonathan; Schmidt, Kailyn; Nayebi, Aran; Bear, Daniel; Yamins, Daniel L. K.; DiCarlo, James J. 2019 arXiv 1909.06161v2 brain_imaging; electrophysiology; human; monkey; visual
Activations of deep convolutional neural networks are aligned with gamma band activity of human visual cortex Kuzovkin, Ilya; Vicente, Raul; Petton, Mathilde; Lachaux, Jean-Philippe; Baciu, Monica; Kahane, Philippe; Rheims, Sylvain; Vidal, Juan R.; Aru, Jaan 2018 Communications Biology 10.1038/s42003-018-0110-y brain_imaging; electrophysiology; human; visual
Methods for computing the maximum performance of computational models of fMRI responses Lage-Castellanos, Agustin; Valente, Giancarlo; Formisano, Elia; Martino, Federico de 2019 PLoS computational biology 10.1371/journal.pcbi.1006397 brain_imaging; human; visual
Building machines that learn and think like people Lake, Brenden M.; Ullman, Tomer D.; Tenenbaum, Joshua B.; Gershman, Samuel J. 2017 The Behavioral and Brain Sciences 10.1017/S0140525X16001837 review
Deep neural networks predict category typicality ratings for images Lake, Brenden M.; Zaremba, Wojciech; Fergus, Rob; Gureckis, Todd M. 2015 Cognitive Science behavior; human; visual
Passive attention in artificial neural networks predicts human visual selectivity Langlois, Thomas A.; Charles Zhao, H.; Grant, Erin; Dasgupta, Ishita; Griffiths, Thomas L.; Jacoby, Nori 2021 arXiv 2107.07013v1 behavior; brain_imaging; human; visual
Deep learning LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey 2015 Nature 10.1038/nature14539 backpropagation
Topographic deep artificial neural networks reproduce the hallmarks of the primate inferior temporal cortex face processing network Lee, Hyodong; Margalit, Eshed; Jozwik, Kamila M.; Cohen, Michael A.; Kanwisher, Nancy; Yamins, Daniel L. K.; DiCarlo, James J. 2020 BioRxiv 10.1101/2020.07.09.185116 brain_imaging; electrophysiology; monkey; visual
Psychlab: A Psychology Laboratory for Deep Reinforcement Learning Agents Leibo, Joel Z.; Masson d’Autume, Cyprien de; Zoran, Daniel; Amos, David; Beattie, Charles; Anderson, Keith; Castañeda, Antonio García; Sanchez, Manuel; Green, Simon; Gruslys, Audrunas; Legg, Shane; Hassabis, Demis; Botvinick, Matthew M. 2018 arXiv 1801.08116v2 behavior; human; visual
Tuning in scene-preferring cortex for mid-level visual features gives rise to selectivity across multiple levels of stimulus complexity Li, Shi Pui Donald; Bonner, Michael F. 2021 BioRxiv 10.1101/2021.09.24.461733 brain_imaging; fMRI; human; visual
Backpropagation and the brain Lillicrap, Timothy P.; Santoro, Adam; Marris, Luke; Akerman, Colin J.; Hinton, Geoffrey 2020 Nature reviews. Neuroscience 10.1038/s41583-020-0277-3 backpropagation; learning; review
Transfer of View-manifold Learning to Similarity Perception of Novel Objects Lin, Xingyu; Wang, Hao; Li, Zhihao; Zhang, Yimeng; Yuille, Alan; Lee, Tai Sing 2017 arXiv 1704.00033v1 behavior; human; visual
Conscious perception of natural images is constrained by category-related visual features Lindh, Daniel; Sligte, Ilja G.; Assecondi, Sara; Shapiro, Kimron L.; Charest, Ian 2019 Nature Communications 10.1038/s41467-019-12135-3 behavior; human; visual
Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future Lindsay, Grace W. 2020 Journal of Cognitive Neuroscience 10.1162/jocn\_a\_01544 human; review; visual
How biological attention mechanisms improve task performance in a large-scale visual system model Lindsay, Grace W.; Miller, Kenneth D. 2018 eLife 10.7554/eLife.38105 behavior; human; visual
Learning what and where to attend Linsley, Drew; Shiebler, Dan; Eberhardt, Sven; Serre, Thomas 2018 arXiv 1805.08819v4 behavior; human; visual
Mid-level visual features underlie the high-level categorical organization of the ventral stream Long, Bria; Yu, Chen-Ping; Konkle, Talia 2018 Proceedings of the National Academy of Sciences of the United States of America 10.1073/pnas.1719616115 brain_imaging; fMRI; human; visual
A comparative biology approach to DNN modeling of vision: A focus on differences, not similarities Lonnqvist, Ben; Bornet, Alban; Doerig, Adrien; Herzog, Michael H. 2021 Journal of Vision 10.1167/jov.21.10.17 human; visual
A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception Lotter, William; Kreiman, Gabriel; Cox, David D. 2018 arXiv 1805.10734 brain_imaging; electrophysiology; monkey; visual
Visual properties and memorising scenes: Effects of image-space sparseness and uniformity Lukavský, Jiří; Děchtěrenko, Filip 2017 Attention, Perception & Psychophysics 10.3758/s13414-017-1375-9 behavior; human; visual
Deep learning-Using machine learning to study biological vision Majaj, Najib J.; Pelli, Denis G. 2018 Journal of Vision 10.1167/18.13.2 review; visual
Toward an Integration of Deep Learning and Neuroscience Marblestone, Adam H.; Wayne, Greg; Kording, Konrad P. 2016 Frontiers in Computational Neuroscience 10.3389/fncom.2016.00094 human; learning; review
Simulating a primary visual cortex at the front of CNNs improves robustness to image perturbations Marques, T.; Schrimpf, Martin; Geiger, Franziska; Cox, David D.; DiCarlo, James J. 2020 BioRxiv 10.1101/2020.06.16.154542 brain_imaging; electrophysiology; monkey; visual
Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks Martin Cichy, Radoslaw; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude 2017 NeuroImage 10.1016/j.neuroimage.2016.03.063 brain_imaging; human; MEG; visual
Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization Masse, Nicolas Y.; Grant, Gregory D.; Freedman, David J. 2018 Proceedings of the National Academy of Sciences of the United States of America 10.1073/pnas.1803839115 behavior; visual
An ecologically motivated image dataset for deep learning yields better models of human vision Mehrer, Johannes; Spoerer, Courtney J.; Jones, Emer C.; Kriegeskorte, Nikolaus; Kietzmann, Tim C. 2021 Proceedings of the National Academy of Sciences of the United States of America 10.1073/pnas.2011417118 brain_imaging; fMRI; human; visual
Individual differences among deep neural network models Mehrer, Johannes; Spoerer, Courtney J.; Kriegeskorte, Nikolaus; Kietzmann, Tim C. 2020 Nature Communications 10.1038/s41467-020-19632-w brain_imaging; visual
Computational models of category-selective brain regions enable high-throughput tests of selectivity Murty, N. Apurva Ratan; Bashivan, Pouya; Abate, Alex; DiCarlo, James J.; Kanwisher, Nancy 2021 Nature Communications 10.1038/s41467-021-25409-6 behavior; brain_imaging, fMRI; human; visual
THINGSvision: a Python toolbox for streamlining the extraction of activations from deep neural networks Muttenthaler, Lukas; Hebart, Martin N. 2021 Frontiers in Neuroinformatics 10.3389/fninf.2021.679838 brain_imaging; fMRI; human; visual
Task-Driven Convolutional Recurrent Models of the Visual System Nayebi, Aran; Bear, Daniel; Kubilius, Jonas; Kar, Kohitij; Ganguli, Surya; Sussillo, David; DiCarlo, James J.; Yamins, Daniel L. K. 2018 arXiv 1807.00053v2 brain_imaging; monkey; visual
Unsupervised Models of Mouse Visual Cortex Nayebi, Aran; Kong, Nathan C. L.; Zhuang, Chengxu; Norcia, Anthony M.; Gardner, Justin L.; Yamins, Daniel L. K. 2021 BioRxiv 10.1101/2021.06.16.448730 brain_imaging; electrophysiology; rodent; visual
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images Nguyen, Anh; Yosinski, Jason; Clune, Jeff 2014 Proceedings of the IEEE conference on Computer Vision and Pattern Recognition behavior; visual
Deep Neural Network Models of Object Recognition Exhibit Human-Like Limitations when Performing Visual Search Tasks Nicholson, David A.; Prinz, Astrid A. 2021 BioRxiv 10.1101/2020.10.26.354258 behavior; human; visual
Brain Hierarchy Score: Which Deep Neural Networks are Hierarchically Brain-Like? Nonaka, Soma; Majima, Kei; Aoki, Shuntaro C.; Kamitani, Yukiyasu 2020 iScience 10.2139/ssrn.3664362 brain_imaging; fMRI; human; visual
Predicting eye movement patterns from fMRI responses to natural scenes O’Connell, Thomas P.; Chun, Marvin M. 2018 Nature Communications 10.1038/s41467-018-07471-9 brain_imaging; fMRI; human; visual
Adapting Deep Network Features to Capture Psychological Representations Peterson, Joshua C.; Abbott, Joshua T.; Griffiths, Thomas L. 2016 arXiv 1608.02164v1 behavior; human; visual
Evaluating (and Improving) the Correspondence Between Deep Neural Networks and Human Representations Peterson, Joshua C.; Abbott, Joshua T.; Griffiths, Thomas L. 2018 Cognitive Science 10.1111/cogs.12670 behavior; human; visual
Human uncertainty makes classification more robust Peterson, Joshua C.; Battleday, Ruairidh M.; Griffiths, Thomas L.; Russakovsky, Olga 2019 Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) behavior; human; semantic; visual
Capturing human category representations by sampling in deep feature spaces Peterson, Joshua C.; Suchow, Jordan W.; Aghi, Krisha; Ku, Alexander Y.; Griffiths, Thomas L. 2018 arXiv 1805.07644v1 behavior; human; visual
Sensory processing and categorization in cortical and deep neural networks Pinotsis, Dimitris A.; Siegel, Markus; Miller, Earl K. 2019 NeuroImage 10.1016/j.neuroimage.2019.116118 brain_imaging; electrophysiology; monkey; visual
Posterior Inferotemporal Cortex Cells Use Multiple Input Pathways for Shape Encoding Ponce, Carlos R.; Lomber, Stephen G.; Livingstone, Margaret S. 2017 Journal of Neuroscience 10.1523/JNEUROSCI.2674-16.2017 behavior; monkey; visual
Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences Ponce, Carlos R.; Xiao, Will; Schade, Peter F.; Hartmann, Till S.; Kreiman, Gabriel; Livingstone, Margaret S. 2019 Cell 10.1016/j.cell.2019.04.005 brain_imaging; electrophysiology; monkey; visual
Human peripheral blur is optimal for object recognition Pramod, Raghavendraro T.; Katti, Harish; Arun, Sripati P. 2018 arXiv 1807.08476v3 behavior; human; visual
Improving Machine Vision using Human Perceptual Representations: The Case of Planar Reflection Symmetry for Object Classification Pramod, Raghavendraro T.; Sp, Arun 2020 IEEE Transactions on Pattern Analysis and Machine Intelligence 10.1109/TPAMI.2020.3008107 brain_imaging; human; visual
Accurate reconstruction of image stimuli from human fMRI based on the decoding model with capsule network architecture Qiao, Kai; Zhang, Chi; Wang, Linyuan; Yan, Bin; Chen, Jian; Zeng, Lei; Tong, Li 2018 arXiv 1801.00602v1 brain_imaging; fMRI; human; visual
Beyond core object recognition: Recurrent processes account for object recognition under occlusion Rajaei, Karim; Mohsenzadeh, Yalda; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi 2019 PLoS computational biology 10.1371/journal.pcbi.1007001 brain_imaging; human; MEG; visual
Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks Rajalingham, Rishi; Issa, Elias B.; Bashivan, Pouya; Kar, Kohitij; Schmidt, Kailyn; DiCarlo, James J. 2018 Journal of Neuroscience 10.1523/JNEUROSCI.0388-18.2018 behavior; brain_imaging; human; monkey; visual
The inferior temporal cortex is a potential cortical precursor of orthographic processing in untrained monkeys Rajalingham, Rishi; Kar, Kohitij; Sanghavi, Sachi; Dehaene, Stanislas; DiCarlo, James J. 2020 Nature Communications 10.1038/s41467-020-17714-3 brain_imaging; electrophysiology; monkey; semantic; visual
Comparison of Object Recognition Behavior in Human and Monkey Rajalingham, Rishi; Schmidt, Kailyn; DiCarlo, James J. 2015 Journal of Neuroscience 10.1523/JNEUROSCI.0573-15.2015 behavior; human; monkey; visual
Characterizing the temporal dynamics of object recognition by deep neural networks : role of depth Ramakrishnan, Kandan; Groen, Iris I. A.; Smeulders, Arnold W. M.; Steven Scholte, H.; Ghebreab, Sennay 2017 BioRxiv 10.1101/178541 brain_imaging; EEG; fMRI; human; visual
A Balanced Comparison of Object Invariances in Monkey IT Neurons Ratan Murty, N. Apurva; Arun, Sripati P. 2017 eNeuro 10.1523/ENEURO.0333-16.2017 brain_imaging; electrophysiology; monkey; visual
Multiplicative mixing of object identity and image attributes in single inferior temporal neurons Ratan Murty, N. Apurva; Arun, Sripati P. 2018 Proceedings of the National Academy of Sciences of the United States of America 10.1073/pnas.1714287115 behavior; brain_imaging; electrophysiology; monkey; visual
Optimizing deep video representation to match brain activity Richard, Hugo; Pinho, Ana; Thirion, Bertrand; Charpiat, Guillaume 2018 arXiv 1809.02440v1 behavior; fMRI; human; visual
A deep learning framework for neuroscience Richards, Blake A.; Lillicrap, Timothy P.; Beaudoin, Philippe; Bengio, Yoshua; Bogacz, Rafal; Christensen, Amelia; Clopath, Claudia; Costa, Rui Ponte; Berker, Archy de; Ganguli, Surya; Gillon, Colleen J.; Hafner, Danijar; Kepecs, Adam; Kriegeskorte, Nikolaus; Latham, Peter; Lindsay, Grace W.; Miller, Kenneth D.; Naud, Richard; Pack, Christopher C.; Poirazi, Panayiota; Roelfsema, Pieter R.; Sacramento, João; Saxe, Andrew; Scellier, Benjamin; Schapiro, Anna C.; Senn, Walter; Wayne, Greg; Yamins, Daniel L. K.; Zenke, Friedemann; Zylberberg, Joel; Therien, Denis; Kording, Konrad P. 2019 Nature Neuroscience 10.1038/s41593-019-0520-2 human; review; visual
Control of synaptic plasticity in deep cortical networks Roelfsema, Pieter R.; Holtmaat, Anthony 2018 Nature reviews. Neuroscience 10.1038/nrn.2018.6 human; learning; review; visual
Totally Looks Like - How Humans Compare, Compared to Machines Rosenfeld, Amir; Solbach, Markus D.; Tsotsos, John K. 2018 arXiv 1803.01485v3 behavior; human; visual
Training Deep Networks to Construct a Psychological Feature Space for a Natural-Object Category Domain Sanders, Craig A.; Nosofsky, Robert M. 2020 Computational Brain & Behavior 10.1007/s42113-020-00073-z behavior; human; visual
If deep learning is the answer, what is the question? Saxe, Andrew; Nelli, Stephanie; Summerfield, Christopher 2021 Nature reviews. Neuroscience 10.1038/s41583-020-00395-8 review; visual
Visual pathways from the perspective of cost functions and multi-task deep neural networks Scholte, H. Steven; Losch, Max M.; Ramakrishnan, Kandan; Haan, Edward H. F. de; Bohte, Sander M. 2018 Cortex 10.1016/j.cortex.2017.09.019 brain_imaging; review; visual
Brain-score: Which artificial neural network for object recognition is most brain-like? Schrimpf, Martin; Kubilius, Jonas; Hong, Ha; Majaj, Najib J.; Rajalingham, Rishi; Issa, Elias B.; Kar, Kohitij; Bashivan, Pouya; Prescott-Roy, Jonathan; Geiger, Franziska; Schmidt, Kailyn; Yamins, Daniel L. K.; DiCarlo, James J. 2020 BioRxiv 10.1101/407007v2.abstract brain_imaging; electrophysiology; human; monkey; visual
End-to-end neural system identification with neural information flow Seeliger, Katja; Ambrogioni, L.; Güçlütürk, Yagmur; van den Bulk, L. M.; Güçlü, Umut; van Gerven, Marcel A. J. 2021 PLoS computational biology 10.1371/journal.pcbi.1008558 brain_imaging; fMRI; human; visual
Convolutional neural network-based encoding and decoding of visual object recognition in space and time Seeliger, Katja; Fritsche, M.; Güçlü, Umut; Schoenmakers, S.; Schoffelen, J-M; Bosch, S. E.; van Gerven, Marcel A. J. 2018 NeuroImage 10.1016/j.neuroimage.2017.07.018 brain_imaging; human; MEG; visual
Generative adversarial networks for reconstructing natural images from brain activity Seeliger, Katja; Güçlü, Umut; Ambrogioni, L.; Güçlütürk, Yagmur; van Gerven, Marcel A. J. 2018 NeuroImage 10.1016/j.neuroimage.2018.07.043 brain_imaging; fMRI; human; visual
Deep Learning: The Good, the Bad, and the Ugly Serre, Thomas 2019 Annual Review of Vision Science 10.1146/annurev-vision-091718-014951 human; review; visual
Deep image reconstruction from human brain activity Shen, Guohua; Horikawa, Tomoyasu; Majima, Kei; Kamitani, Yukiyasu 2019 PLoS computational biology 10.1371/journal.pcbi.1006633 brain_imaging; fMRI; human; visual
Comparison Against Task Driven Artificial Neural Networks Reveals Functional Organization of Mouse Visual Cortex Shi, Jianghong; Shea-Brown, Eric; Buice, Michael A. 2019 arXiv 1911.07986v1 brain_imaging; electrophysiology; rodent; visual
Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming 2018 Human brain mapping 10.1002/hbm.24006 brain_imaging; fMRI; human; visual
From photos to sketches - how humans and deep neural networks process objects across different levels of visual abstraction Singer, Johannes J. D.; Seeliger, Katja; Kietzmann, Tim C.; Hebart, Martin N. 2021 PsyArXiv 10.31234/osf.io/xg2uy behavior; human; visual
End-to-end Deep Prototype and Exemplar Models for Predicting Human Behavior Singh, Pulkit; Peterson, Joshua C.; Battleday, Ruairidh M.; Griffiths, Thomas L. 2020 arXiv 2007.08723v1 behavior; human; visual
Stimulus domain transfer in recurrent models for large scale cortical population prediction on video Sinz, Fabian H.; Ecker, Alexander S.; Fahey, Paul G.; Walker, Edgar Y.; Cobos, Erick; Froudarakis, Emmanouil; Yatsenko, Dimitri; Pitkow, Xaq; Reimer, Jacob; Tolias, Andreas S. 2018 BioRxiv 10.1101/452672 brain_imaging; electrophysiology; monkey; rodent; visual
Engineering a Less Artificial Intelligence Sinz, Fabian H.; Pitkow, Xaq; Reimer, Jacob; Bethge, Matthias; Tolias, Andreas S. 2019 Neuron 10.1016/j.neuron.2019.08.034 review
Reward-based training of recurrent neural networks for cognitive and value-based tasks Song, H. Francis; Yang, Guangyu R.; Wang, Xiao-Jing 2017 eLife 10.7554/eLife.21492 behavior; learning
The Geometry of Concept Learning Sorscher, Ben; Ganguli, Surya; Sompolinsky, Haim 2021 BioRxiv 10.1101/2021.03.21.436284 learning; review; visual
Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision Spoerer, Courtney J.; Kietzmann, Tim C.; Mehrer, Johannes; Charest, Ian; Kriegeskorte, Nikolaus 2020 PLoS computational biology 10.1371/journal.pcbi.1008215 behavior; human; visual
The feature-weighted receptive field: an interpretable encoding model for complex feature spaces St-Yves, Ghislain; Naselaris, Thomas 2018 NeuroImage 10.1016/j.neuroimage.2017.06.035 brain_imaging; fMRI; human; visual
Diverse deep neural networks all predict human IT well, after training and fitting Storrs, Katherine R.; Kietzmann, Tim C.; Walther, Alexander; Mehrer, Johannes; Kriegeskorte, Nikolaus 2020 BioRxiv 10.1101/2020.05.07.082743 brain_imaging; fMRI; human; visual
Deep Learning for Cognitive Neuroscience Storrs, Katherine R.; Kriegeskorte, Nikolaus 2019 arXiv 1903.01458v1 review
A Deep-Dream Virtual Reality Platform for Studying Altered Perceptual Phenomenology Suzuki, Keisuke; Roseboom, Warrick; Schwartzman, David J.; Seth, Anil K. 2017 Scientific Reports 10.1038/s41598-017-16316-2 behavior; human; visual
Invariant recognition drives neural representations of action sequences Tacchetti, Andrea; Isik, Leyla; Poggio, Tomaso A. 2017 PLoS computational biology 10.1371/journal.pcbi.1005859 brain_imaging; electrophysiology; human; MEG; visual
Invariant Recognition Shapes Neural Representations of Visual Input Tacchetti, Andrea; Isik, Leyla; Poggio, Tomaso A. 2018 Annual Review of Vision Science 10.1146/annurev-vision-091517-034103 brain_imaging; human; review; visual
Assessing Neural Network Scene Classification from Degraded Images Tadros, Timothy; Cullen, Nicholas C.; Greene, Michelle R.; Cooper, Emily A. 2019 Association for Computing Machinery 10.1145/3342349 behavior; human; visual
Recurrent computations for visual pattern completion Tang, Hanlin; Schrimpf, Martin; Lotter, William; Moerman, Charlotte; Paredes, Ana; Ortega Caro, Josue; Hardesty, Walter; Cox, David D.; Kreiman, Gabriel 2018 Proceedings of the National Academy of Sciences of the United States of America 10.1073/pnas.1719397115 behavior; brain_imaging; human; visual
Similarities and differences between stimulus tuning in the inferotemporal visual cortex and convolutional networks Tripp, Bryan 2016 arXiv 1612.06975v1 brain_imaging; visual
Characterisation of nonlinear receptive fields of visual neurons by convolutional neural network Ukita, Jumpei; Yoshida, Takashi; Ohki, Kenichi 2019 Scientific Reports 10.1038/s41598-019-40535-4 brain_imaging; electrophysiology; rodent; visual
Visual perception of liquids: Insights from deep neural networks van Assen, Jan Jaap R.; Nishida, Shin’ya; Fleming, Roland W. 2020 PLoS computational biology 10.1371/journal.pcbi.1008018 behavior; human; visual
Seeing eye-to-eye? A comparison of object recognition performance in humans and deep convolutional neural networks under image manipulation van Dyck, Leonard E.; Gruber, Walter R. 2020 arXiv 2007.06294v2 behavior; human; learning; visual
Perception Science in the Age of Deep Neural Networks VanRullen, Rufin 2017 Frontiers in Psychology 10.3389/fpsyg.2017.00142 review
Reconstructing faces from fMRI patterns using deep generative neural networks VanRullen, Rufin; Reddy, Leila 2019 Communications Biology 10.1038/s42003-019-0438-y brain_imaging; fMRI; human; visual
Incorporating intrinsic suppression in deep neural networks captures dynamics of adaptation in neurophysiology and perception Vinken, Kasper; Boix, Xavier; Kreiman, Gabriel 2020 Science Advances 10.1126/sciadv.abd4205 brain_imaging; human; visual
Deep Neural Networks Point to Mid-level Complexity of Rodent Object Vision Vinken, Kasper; Op de Beeck, Hans 2020 BioRxiv 10.1101/2020.02.08.940189 brain_imaging; electrophysiology; rodent; visual
Using deep neural networks to evaluate object vision tasks in rats Vinken, Kasper; Op de Beeck, Hans 2021 PLoS computational biology 10.1371/journal.pcbi.1008714 behavior; brain_imaging; rodent; visual
A Convolutional Subunit Model for Neuronal Responses in Macaque V1 Vintch, Brett; Movshon, J. Anthony; Simoncelli, Eero P. 2015 Journal of Neuroscience 10.1523/JNEUROSCI.2815-13.2015 brain_imaging; electrophysiology; monkey; visual
Correspondence between Monkey Visual Cortices and Layers of a Saliency Map Model Based on a Deep Convolutional Neural Network for Representations of Natural Images Wagatsuma, Nobuhiko; Hidaka, Akinori; Tamura, Hiroshi 2021 eNeuro 10.1523/ENEURO.0200-20.2020 brain_imaging; electrophysiology; monkey; visual
A neural basis of probabilistic computation in visual cortex Walker, Edgar Y.; Cotton, R. James; Ma, Wei Ji; Tolias, Andreas S. 2020 Nature Neuroscience 10.1038/s41593-019-0554-5 behavior; brain_imaging; electrophysiology; monkey; visual
A parametric texture model based on deep convolutional features closely matches texture appearance for humans Wallis, Thomas S. A.; Funke, Christina M.; Ecker, Alexander S.; Gatys, Leon A.; Wichmann, Felix A.; Bethge, Matthias 2017 Journal of Vision 10.1167/17.12.5 behavior; human; visual
Image content is more important than Bouma’s Law for scene metamers Wallis, Thomas S. A.; Funke, Christina M.; Ecker, Alexander S.; Gatys, Leon A.; Wichmann, Felix A.; Bethge, Matthias 2019 eLife 10.7554/eLife.42512 behavior; human; visual
Recent advances in understanding object recognition in the human brain: deep neural networks, temporal dynamics, and context Wardle, Susan G.; Baker, Chris I. 2020 F1000Research 10.12688/f1000research.22296.1 brain_imaging; fMRI; human; MEG; visual
Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta 2018 Frontiers in Psychology 10.3389/fpsyg.2018.00345 behavior; human; visual
Transferring and generalizing deep-learning-based neural encoding models across subjects Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming 2018 NeuroImage 10.1016/j.neuroimage.2018.04.053 brain_imaging; fMRI; human; visual
Deep Residual Network Predicts Cortical Representation and Organization of Visual Features for Rapid Categorization Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming 2018 Scientific Reports 10.1038/s41598-018-22160-9 brain_imaging; fMRI; human; visual
Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision Wen, Haiguang; Shi, Junxing; Zhang, Yizhen; Lu, Kun-Han; Cao, Jiayue; Liu, Zhongming 2018 Cerebral Cortex 10.1093/cercor/bhx268 brain_imaging; fMRI; human; semantic
Deep Neural Networks for Modeling Visual Perceptual Learning Wenliang, Li K.; Seitz, Aaron R. 2018 Journal of Neuroscience 10.1523/JNEUROSCI.1620-17.2018 behavior; brain_imaging; electrophysiology; fMRI; human; monkey; visual
Theories of Error Back-Propagation in the Brain Whittington, James C. R.; Bogacz, Rafal 2019 Trends in Cognitive Sciences 10.1016/j.tics.2018.12.005 backpropagation; learning; review
Methods and measurements to compare men against machines Wichmann, Felix A.; Janssen, David H. J.; Geirhos, Robert; Aguilar, Guillermo; Schütt, Heiko H.; Maertens, Marianne; Bethge, Matthias 2017 Electronic Imaging, Human Vision and Electronic Imaging 10.2352/ISSN.2470-1173.2017.14.HVEI-113 behavior; human; visual
Explainable Deep Learning: A Field Guide for the Uninitiated Xie, Ning; Ras, Gabrielle; van Gerven, Marcel A. J.; Doran, Derek 2020 arXiv 2004.14545v1 review
Convolutional neural networks do not develop brain-like transformation tolerant visual representations Xu, Yaoda; Vaziri-Pashkam, Maryam 2021 BioRxiv 10.1101/2020.08.11.246934 behavior; brain_imaging; fMRI; human; visual
Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks Xu, Yaoda; Vaziri-Pashkam, Maryam 2021 Journal of Neuroscience 10.1523/JNEUROSCI.1993-20.2021 brain_imaging; fMRI; human; visual
Limits to visual representational correspondence between convolutional neural networks and the human brain Xu, Yaoda; Vaziri-Pashkam, Maryam 2021 Nature Communications 10.1038/s41467-021-22244-7 brain_imaging; fMRI; human; visual
Using goal-driven deep learning models to understand sensory cortex Yamins, Daniel L. K.; DiCarlo, James J. 2016 Nature Neuroscience 10.1038/nn.4244 brain_imaging; review
Performance-optimized hierarchical models predict neural responses in higher visual cortex Yamins, Daniel L. K.; Hong, Ha; Cadieu, Charles F.; Solomon, Ethan A.; Seibert, Darren; DiCarlo, James J. 2014 Proceedings of the National Academy of Sciences of the United States of America 10.1073/pnas.1403112111 brain_imaging; electrophysiology; monkey; visual
Efficient inverse graphics in biological face processing Yildirim, Ilker; Belledonne, Mario; Freiwald, Winrich; Tenenbaum, Joshua B. 2020 Science Advances 10.1126/sciadv.aax5979 behavior; human; visual
An integrative computational architecture for object-driven cortex Yildirim, Ilker; Wu, Jiajun; Kanwisher, Nancy; Tenenbaum, Joshua B. 2019 Current Opinion in Neurobiology 10.1016/j.conb.2019.01.010 brain_imaging; fMRI; human; visual
A critique of pure learning and what artificial neural networks can learn from animal brains Zador, Anthony M. 2019 Nature Communications 10.1038/s41467-019-11786-6 human; review; visual
Orthogonal Representations of Object Shape and Category in Deep Convolutional Neural Networks and Human Visual Cortex Zeman, Astrid A.; Ritchie, J. Brendan; Bracci, Stefania; Op de Beeck, Hans 2020 Scientific Reports 10.1038/s41598-020-59175-0 brain_imaging; fMRI; human; visual
Continual learning of context-dependent processing in neural networks Zeng, Guanxiong; Chen, Yang; Cui, Bo; Yu, Shan 2019 Nature Machine Intelligence 10.1038/s42256-019-0080-x behavior; human; semantic; visual
Constraint-Free Natural Image Reconstruction From fMRI Signals Based on Convolutional Neural Network Zhang, Chi; Qiao, Kai; Wang, Linyuan; Tong, Li; Zeng, Ying; Yan, Bin 2018 Frontiers in Human Neuroscience 10.3389/fnhum.2018.00242 brain_imaging; fMRI; human; visual
Humans can decipher adversarial images Zhou, Zhenglong; Firestone, Chaz 2019 Nature Communications 10.1038/s41467-019-08931-6 behavior; human; visual
Robustness of Object Recognition under Extreme Occlusion in Humans and Computational Models Zhu, Hongru; Tang, Peng; Park, Jeongho; Park, Soojin; Yuille, Alan 2019 arXiv 1905.04598v2 brain_imaging; human; visual
Deep Learning Predicts Correlation between a Functional Signature of Higher Visual Areas and Sparse Firing of Neurons Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel L. K.; Hu, Xiaolin 2017 Frontiers in Computational Neuroscience 10.3389/fncom.2017.00100 brain_imaging; visual
Unsupervised neural network models of the ventral visual stream Zhuang, Chengxu; Yan, Siming; Nayebi, Aran; Schrimpf, Martin; Frank, Michael C.; DiCarlo, James J.; Yamins, Daniel L. K. 2021 Proceedings of the National Academy of Sciences of the United States of America 10.1073/pnas.2014196118 behavior; electrophysiology; monkey; visual
How Well do Feature Visualizations Support Causal Understanding of CNN Activations? Zimmermann, Roland S.; Borowski, Judy; Geirhos, Robert; Bethge, Matthias; Wallis, Thomas S. A.; Brendel, Wieland 2021 arXiv 2106.12447v2 brain_imaging; human; visual
Qualitative similarities and differences in visual object representations between brains and deep networks Jacob,Georgin ; R. T., Pramod; Katti, Harish; S. P., Arun; 2021 Nature Communications 10.1038/s41467-021-22078-3 deep networks, perception
Data-driven computational models reveal perceptual simulation in word processing Petilli, Marco A.; Günther, Fritz; Vergallito, Alessandra; Ciapparelli, Marco; Marelli, Marco 2021 Journal of Memory and Language 10.1016/j.jml.2020.104194 behavior, human, semantic, visual
Semantic transparency is not invisibility: A computational model of perceptually-grounded conceptual combination in word processing Günther, Fritz; Petilli, Marco A.; Marelli, Marco 2020 Journal of Memory and Language 10.1016/j.jml.2020.104104 behavior, human, semantic, visual
Images of the unseen: extrapolating visual representations for abstract and concrete words in a data-driven computational model Günther, Fritz; Petilli, Marco A.; Vergallito, Alessandra; Marelli, Marco 2020 Psychological Research 10.1007/s00426-020-01429-7 behavior, human, semantic, visual
Unveiling functions of the visual cortex using task-specific deep neural networks Dwivedi, Kshitij; Bonner, Michael F.; Cichy, Radoslaw Martin; Gemma Roig 2021 PLOS Computational Biology 10.1371/journal.pcbi.1009267
A unified theory of early visual representations from retina to cortex through anatomically constrained deep cnNs Lindsey, Jack; Ocko, Samuel A.; Ganguli, Surya; Deny, Stephane 2019 BioRxiv 10.1101/511535
But Still It Moves: Static Image Statistics Underlie How We See Motion Rideaux, Reuben;Welchman, Andrew E. 2020 Journal of Neuroscience 10.1523/JNEUROSCI.2760-19.2020
Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence Schrimpf, Martin; Kubilius, Jonas; Lee, Michael J.; Ratan Murty, N. Apurva; Ajemian, Robert; DiCarlo, James J. 2020 Neuron 10.1016/j.neuron.2020.07.040 behavior, electrophysiology, human, monkey, visual, review
The neural architecture of language: Integrative modeling converges on predictive processing Schrimpf, Martin; Blank, Idan Asher; Tuckute, Greta; Kauf, Carina; Hosseini, Eghbal A.; Kanwisher, Nancy; Tenenbaum, Joshua B.; Fedorenko, Evelina 2021 Proceedings of the National Academy of Sciences (PNAS) 10.1073/pnas.2105646118 behavior, brain_imaging, EEG, fMRI, human, learning
Wiring Up Vision: Minimizing Supervised Synaptic Updates Needed to Produce a Primate Ventral Stream Geiger, Franziska; Schrimpf, Martin; Marques, Tiago; DiCarlo, James J. 2020 bioRxiv 10.1101/2020.06.08.140111https://www.biorxiv.org/content/10.1101/2020.06.08.140111v1 behavior, electrophysiology, human, monkey, visual, backpropagation, learning
The Algonauts Project 2021 Challenge: How the Human Brain Makes Sense of a World in Motion Cichy, Radoslaw Martin; Dwivedi, Kshitij; Lahner, Benjamin; Lascelles, Alex; Iamshchinina, Polina; Graumann, Monika; Andonian, Alex; Ratan Murty, N Apurva; Kay, Kendrick; Roig, Gemma; Oliva, Aude 2021 arXiv https://arxiv.org/abs/2104.13714v1 brain_imaging, MEG, fMRI, human, visual
Deep neural networks and visuo-semantic models explain complementary components of human ventral-stream representational dynamics Jozwik, K. M., Kietzmann, T. C., Cichy, R. M., Kriegeskorte, N., & Mur, M. 2021 bioRxiv https://www.biorxiv.org/content/10.1101/2021.10.25.465583v1 brain_imaging, MEG, human, visual
Generative Adversarial Phonology: Modeling Unsupervised Phonetic and Phonological Learning With Neural Networks Beguš, Gašper 2020 Frontiers in Artificial Intelligence 10.3389/frai.2020.00044 behavior, human, learning
Local and non-local dependency learning and emergence of rule-like representations in speech data by deep convolutional generative adversarial networks Beguš, Gašper 2022 Computer Speech & Language 10.1016/j.csl.2021.101244 behavior, human, learning
Not so fast: Limited validity of deep convolutional neural networks as in silico models for human naturalistic face processing Jiahui, Guo; Feilong, Ma; Visconti di Oleggio Castello, Matteo; Nastase, Samuel A.; Haxby, James V.; Gobbini, M. Ida 2021 bioRxiv 10.1101/2021.11.17.469009 behavior, brain_imaging, fMRI, human, visual
Grounding deep neural network predictions of human categorization behavior in understandable functional features: The case of face identity Daube, Christoph; Xu, Tian; Zhan, Jiayu; Webb, Andrew; Ince, Robin A. A.; Garrod, Oliver G. B.; Schyns, Philippe 2021 Patterns 10.1016/j.patter.2021.100348 behavior, human, visual
A self-supervised deep neural network for image completion resembles early visual cortex fMRI activity patterns for occluded scenes Svanera, Michele; Morgan, Andrew T; Petro, Lucy S; Muckli, Lars 2021 Journal of Vision 10.1167/jov.21.7.5 deep learning, self-supervised learning, fMRI
Brain-like functional specialization emerges spontaneously in deep neural networks Dobs, Katharina; Martinez, Julio; Kell, Alexander; Kanwisher, Nancy 2022 Science Advances 10.1126/sciadv.abl8913 deep learning, fMRI
From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction Tanaka, Hidenori; Nayebi, Aran; Maheswaranathan, Niru; McIntosh, Lane; Baccus, Stephen; Ganguli, Surya 2019 NeurIPS https://proceedings.neurips.cc/paper/2019/file/eeaebbffb5d29ff62799637fc51adb7b-Paper.pdf
Comparing Object Recognition in Humans and Deep Convolutional Neural Networks – An Eye Tracking Study van Dyck, Leonard E.; Kwitt, Roland; Denzler, Sebastian J.; Gruber, Walter R. 2021 Frontiers in Neuroscience 10.3389/fnins.2021.750639 behavior, human, visual
Guiding Visual Attention in Deep Convolutional Neural Networks Based on Human Eye Movements. van Dyck, Leonard E.; Denzler, Sebastian J.; Gruber, Walter R. 2022 arxiv 10.48550/arxiv.2206.10587 behavior, human, visual