Would like to add new papers or update existing ones? Click here. We will update the website regulary.
This list is the updated (but surely not complete!) literature collection by Anna Wolff and Martin Hebart (ViCCo Group).
Title | Authors | Year | Journal | Link | Keywords |
---|---|---|---|---|---|
Sharpening of Hierarchical Visual Feature Representations of Blurred Images | Abdelhack, Mohamed; Kamitani, Yukiyasu | 2018 | eNeuro | 10.1523/ENEURO.0443-17.2018 | brain_imaging; fMRI; visual |
Conflicting Bottom-up and Top-down Signals during Misrecognition of Visual Objects | Abdelhack, Mohamed; Kamitani, Yukiyasu | 2019 | BioRxiv | 10.1101/521252 | brain_imaging; fMRI; human; visual |
Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes | Antolík, Ján; Hofer, Sonja B.; Bednar, James A.; Mrsic-Flogel, Thomas D. | 2016 | PLoS computational biology | 10.1371/journal.pcbi.1004927 | brain_imaging; electrophysiology; rodent; visual |
What deep learning can tell us about higher cognitive functions like mindreading? | Aru, Jaan; Vicente, Raul | 2018 | arXiv | 1803.10470v2 | review |
Training for object recognition with increasing spatial frequency: A comparison of deep learning with human vision | Avberšek, Lev Kiar; Zeman, Astrid A.; Op de Beeck, Hans | 2021 | BioRxiv | 10.1101/2021.01.24.427905 | brain_imaging; human; visual |
Deep convolutional networks do not classify based on global object shape | Baker, Nicholas; Lu, Hongjing; Erlikhman, Gennady; Kellman, Philip J. | 2018 | PLoS computational biology | 10.1371/journal.pcbi.1006613 | behavior; human; visual |
The functional specialization of visual cortex emerges from training parallel pathways with self-supervised predictive learning | Bakhtiari, Shahab; Mineault, Patrick; Lillicrap, Tim; Pack, Christopher C.; Richards, Blake A. | 2021 | BioRxiv | 10.1101/2021.06.18.448989v2 | brain_imaging; rodent; visual; electrophysiology |
Vector-based navigation using grid-like representations in artificial agents | Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy P.; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J.; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan | 2018 | Nature | 10.1038/s41586-018-0102-6 | brain_imaging; electrophysiology; rodent; visual |
The temporal evolution of conceptual object representations revealed through models of behavior, semantics and deep neural networks | Bankson, B. B.; Hebart, Martin N.; Groen, Iris I. A.; Baker, Chris I. | 2018 | NeuroImage | 10.1016/j.neuroimage.2018.05.037 | brain_imaging; MEG; semantic; visual |
Analyzing biological and artificial neural networks: challenges with opportunities for synergy? | Barrett, David G. T.; Morcos, Ari S.; Macke, Jakob H. | 2018 | Current Opinion in Neurobiology | 1810.13373v1 | review |
Neural Population Control via Deep ANN Image Synthesis | Bashivan, Pouya; Kar, Kohitij; DiCarlo, James J. | 2018 | Cognitive Computational Neuroscience | brain_imaging; electrophysiology; monkey; visual | |
Neural population control via deep image synthesis | Bashivan, Pouya; Kar, Kohitij; DiCarlo, James J. | 2019 | Science | 10.1126/science.aav9436 | brain_imaging; electrophysiology; monkey; visual |
Modeling Human Categorization of Natural Images Using Deep Feature Representations | Battleday, Ruairidh M.; Peterson, Joshua C.; Griffiths, Thomas L. | 2017 | arXiv | 1711.04855v1 | behavior; human; visual |
Capturing human categorization of natural images by combining deep networks and cognitive models | Battleday, Ruairidh M.; Peterson, Joshua C.; Griffiths, Thomas L. | 2020 | Nature Communications | 10.1038/s41467-020-18946-z | behavior; human; visual |
From convolutional neural networks to models of higher-level cognition (and back again) | Battleday, Ruairidh M.; Peterson, Joshua C.; Griffiths, Thomas L. | 2021 | Annals of the New York Academy of Sciences | 10.1111/nyas.14593 | human; review; visual |
Minimal videos: Trade-off between spatial and temporal information in human and machine vision | Ben-Yosef, Guy; Kreiman, Gabriel; Ullman, Shimon | 2020 | Cognition | 10.1016/j.cognition.2020.104263 | behavior; human; visual |
Computational mechanisms underlying cortical responses to the affordance properties of visual scenes | Bonner, Michael F.; Epstein, Russell A. | 2018 | PLoS computational biology | 10.1371/journal.pcbi.1006111 | brain_imaging; fMRI; visual |
Reinforcement Learning, Fast and Slow | Botvinick, Matthew M.; Ritter, Sam; Wang, Jane X.; Kurth-Nelson, Zeb; Blundell, Charles; Hassabis, Demis | 2019 | Trends in Cognitive Sciences | 10.1016/j.tics.2019.02.006 | learning; review |
Object-scene conceptual regularities reveal fundamental differences between 3 biological and artificial object vision | Bracci, Stefania; Mraz, Jakob; Zeman, Astrid A.; Leys, Gaëlle; Op de Beeck, Hans | 2021 | BioRxiv | 10.1101/2021.08.13.456197 | brain_imaging; fMRI; human; visual |
The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks | Bracci, Stefania; Ritchie, J. Brendan; Kalfas, Ioannis; Op de Beeck, Hans | 2019 | Journal of Neuroscience | 10.1523/JNEUROSCI.1714-18.2019 | brain_imaging; fMRI; human; visual |
Learning divisive normalization in primary visual cortex | Burg, Max F.; Cadena, Santiago A.; Denfield, George H.; Walker, Edgar Y.; Tolias, Andreas S.; Bethge, Matthias; Ecker, Alexander S. | 2021 | PLoS computational biology | 10.1371/journal.pcbi.1009028 | brain_imaging; electrophysiology; monkey; visual |
Deep convolutional models improve predictions of macaque V1 responses to natural images | Cadena, Santiago A.; Denfield, George H.; Walker, Edgar Y.; Gatys, Leon A.; Tolias, Andreas S.; Bethge, Matthias; Ecker, Alexander S. | 2019 | PLoS computational biology | 10.1371/journal.pcbi.1006897 | brain_imaging; electrophysiology; monkey; visual |
How well do deep neural networks trained on object recognition characterize the mouse visual system? | Cadena, Santiago A.; Sinz, Fabian H.; Muhammad, Taliah; Froudarakis, Emmanouil; Cobos, Erick; Walker, Edgar Y.; Reimer, Jake; Bethge, Matthias; Tolias, Andreas S.; Ecker, Alexander S. | 2019 | NeurIPS workshop Neuro-AI | brain_imaging; electrophysiology; rodent; visual | |
Deep neural networks rival the representation of primate IT cortex for core visual object recognition | Cadieu, Charles F.; Hong, Ha; Yamins, Daniel L. K.; Pinto, Nicolas; Ardila, Diego; Solomon, Ethan A.; Majaj, Najib J.; DiCarlo, James J. | 2014 | PLoS computational biology | 10.1371/journal.pcbi.1003963 | brain_imaging; electrophysiology; monkey; visual |
BOLD5000, a public fMRI dataset while viewing 5000 visual images | Chang, Nadine; Pyles, John A.; Marcus, Austin; Gupta, Abhinav; Tarr, Michael J.; Aminoff, Elissa M. | 2019 | Scientific Data | 10.1038/s41597-019-0052-3 | brain_imaging; fMRI; human; semantic; visual |
The Roles of Statistics in Human Neuroscience | Chén, Oliver Y. | 2019 | Brain Sciences | 10.3390/brainsci9080194 | review |
DNNBrain: A Unifying Toolbox for Mapping Deep Neural Networks and Brains | Chen, Xiayu; Zhou, Ming; Gong, Zhengxin; Xu, Wei; Liu, Xingyu; Huang, Taicheng; Zhen, Zonglei; Liu, Jia | 2020 | Frontiers in Computational Neuroscience | 10.3389/fncom.2020.580632 | brain_imaging; fMRI; human; visual |
Models of primate ventral stream that categorize and visualize images | Christensen, Elijah D.; Zylberberg, Joel | 2020 | BioRxiv | 10.1101/2020.02.21.958488 | brain_imaging; electrophysiology; monkey; visual |
Deep Neural Networks as Scientific Models | Cichy, Radoslaw M.; Kaiser, Daniel | 2019 | Trends in Cognitive Sciences | 10.1016/j.tics.2019.01.009 | review |
Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence | Cichy, Radoslaw M.; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude | 2016 | Scientific Reports | 10.1038/srep27755 | brain_imaging; fMRI; human; MEG; visual |
Neural dynamics of real-world object vision that guide behaviour | Cichy, Radoslaw M.; Kriegeskorte, Nikolaus; Jozwik, Kamila M.; van den Bosch, Jasper J. F.; Charest, Ian | 2017 | BioRxiv | 10.1101/147298 | brain_imaging; fMRI; human; MEG; semantic; visual |
Human perception in computer vision | Dekel, Ron | 2017 | arXiv | 1701.04674v1 | behavior; human; visual |
Integrated deep visual and semantic attractor neural networks predict fMRI pattern-information along the ventral object processing pathway | Devereux, Barry J.; Clarke, Alex; Tyler, Lorraine K. | 2018 | Scientific Reports | 10.1038/s41598-018-28865-1 | brain_imaging; fMRI; semantic; visual |
Disentangled behavioral representations | Dezfouli, A., Ashtiani, H., Ghattas, O., Nock, R., Dayan, P., & Ong, C. S. | 2019 | BioRxiv | 10.1101/658252 | behavior; human; visual |
Models that learn how humans learn: The case of decision-making and its disorders | Dezfouli, Amir; Griffiths, Kristi; Ramos, Fabio; Dayan, Peter; Balleine, Bernard W. | 2019 | PLoS computational biology | 10.1371/journal.pcbi.1006903 | behavior; human; visual |
Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models | Dezfouli, Amir; Morris, Richard; Ramos, Fabio; Dayan, Peter; Balleine, Bernard W. | 2018 | BioRxiv | 10.1101/328849 | behavior; brain_imaging; fMRI; human; visual |
Human and DNN Classification Performance on Images With Quality Distortions: A Comparative Study | Dodge, Samuel; Karam, Lina | 2019 | Association for Computing Machinery | 10.1145/3306241 | behavior; human; visual |
Crowding reveals fundamental differences in local vs. global processing in humans and machines | Doerig, Adrien; Bornet, A.; Choung, O. H.; Herzog, Michael H. | 2020 | Vision Research | 10.1016/j.visres.2019.12.006 | behavior; human; visual |
Capsule Networks as Recurrent Models ofGrouping and Segmentation | Doerig, Adrien; Schmittwilken, Lynn; Sayim, Bilge; Manassi, Mauro; Herzog, Michael H. | 2020 | BioRxiv | 10.1101/747394 | behavior; human; visual |
What do adversarial images tell us about human vision? | Dujmović, Marin; Malhotra, Gaurav; Bowers, Jeffrey S. | 2020 | eLife | 10.7554/eLife.55978 | behavior; human; visual |
Unveiling functions of the visual cortex using task-specific deep neural networks | Dwivedi, Kshitij; Bonner, Michael F.; Cichy, Radoslaw M.; Roig, Gemma | 2021 | BioRxiv | 10.1101/2020.11.27.401380 | brain_imaging; fMRI; human; semantic; visual |
Unraveling Representations in Scene-selective Brain Regions Using Scene-Parsing Deep Neural Networks | Dwivedi, Kshitij; Cichy, Radoslaw M.; Roig, Gemma | 2020 | Journal of Cognitive Neuroscience | 10.1162/jocn\_a\_01624 | brain_imaging; fMRI; human; visual |
Task-specific vision models explain task-specific areas of visual cortex | Dwivedi, Kshitij; Roig, Gemma | 2018 | BioRxiv | 10.1101/402735 | brain_imaging; visual |
How Deep is the Feature Analysis underlying Rapid Visual Categorization? | Eberhardt, Sven; Cader, Jonah; Serre, Thomas | 2016 | Advances in Neural Information Processing Systems | 1606.01167v1 | behavior; human; visual |
A rotation-equivariant convolutional neural network model of primary visual cortex | Ecker, Alexander S.; Sinz, Fabian H.; Froudarakis, Emmanouil; Fahey, Paul G.; Cadena, Santiago A.; Walker, Edgar Y.; Cobos, Erick; Reimer, Jacob; Tolias, Andreas S.; Bethge, Matthias | 2018 | arXiv | 1809.10504v1 | brain_imaging; electrophysiology; rodent; visual |
Seeing it all: Convolutional network layers map the function of the human visual system | Eickenberg, Michael; Gramfort, Alexandre; Varoquaux, Gaël; Thirion, Bertrand | 2017 | NeuroImage | 10.1016/j.neuroimage.2016.10.001 | brain_imaging; fMRI; human; visual |
Adversarial Examples that Fool both Computer Vision and Time-Limited Humans | Elsayed, Gamaleldin F.; Shankar, Shreya; Cheung, Brian; Papernot, Nicolas; Kurakin, Alex; Goodfellow, Ian; Sohl-Dickstein, Jascha | 2018 | arXiv | 1802.08195v3 | behavior; human; visual |
Relating Visual Production and Recognition of Objects in Human Visual Cortex | Fan, Judith E.; Wammes, Jeffrey D.; Gunn, Jordan B.; Yamins, Daniel L. K.; Norman, Kenneth A.; Turk-Browne, Nicholas B. | 2020 | Journal of Neuroscience | 10.1523/JNEUROSCI.1843-19.2019 | brain_imaging; fMRI; human; visual |
Common Object Representations for Visual Production and Recognition | Fan, Judith E.; Yamins, Daniel L. K.; Turk-Browne, Nicholas B. | 2018 | Cognitive Science | 10.1111/cogs.12676 | behavior; human; visual |
A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans | Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi | 2016 | Scientific Reports | 10.1038/srep25025 | behavior; human; monkey; visual |
Training neural networks to mimic the brain improves object recognition performance | Federer, Callie; Xu, Haoyan; Fyshe, Alona; Zylberberg, Joel | 2020 | arXiv | 1905.10679v2 | brain_imaging; electrophysiology; human; monkey; visual |
Comparing continual task learning in minds and machines | Flesch, Timo; Balaguer, Jan; Dekker, Ronald; Nili, Hamed; Summerfield, Christopher | 2018 | Proceedings of the National Academy of Sciences | 10.1073/pnas.1800755115 | human; learning; visual |
Using human brain activity to guide machine learning | Fong, Ruth C.; Scheirer, Walter J.; Cox, David D. | 2018 | Scientific Reports | 10.1038/s41598-018-23618-6 | brain_imaging; fMRI; human; visual |
Constrained sampling from deep generative image models reveals mechanisms of human target detection | Fruend, Ingo | 2020 | Journal of Vision | 10.1167/jov.20.7.32 | behavior; human; visual |
Human sensitivity to perturbations constrained by a model of the natural image manifold | Fruend, Ingo; Stalker, Elee | 2018 | Journal of Vision | 10.1167/18.11.20 | behavior; human; visual |
Five points to check when comparing visual perception in humans and machines | Funke, Christina M.; Borowski, Judy; Stosio, Karolina; Brendel, Wieland; Wallis, Thomas S. A.; Bethge, Matthias | 2021 | Journal of Vision | 10.1167/jov.21.3.16 | behavior; human; visual |
Do Primates and Deep Artificial Neural Networks Perform Object Categorization in a Similar Manner? | Gangopadhyay, Prabaha; Das, Jhilik | 2019 | Journal of Neuroscience | 10.1523/JNEUROSCI.2458-18.2018 | behavior; electrophysiology; fMRI; human; monkey; visual |
Visual Object Recognition: Do We (Finally) Know More Now Than We Did? | Gauthier, Isabel; Tarr, Michael J. | 2016 | Annual Review of Vision Science | 10.1146/annurev-vision-111815-114621 | review; visual |
Comparing deep neural networks against humans: object recognition when the signal gets weaker | Geirhos, Robert; Janssen, David H. J.; Schütt, Heiko H.; Rauber, Jonas; Bethge, Matthias; Wichmann, Felix A. | 2017 | arXiv | 1706.06969v2 | behavior; human; visual |
Generalisation in humans and deep neural networks | Geirhos, Robert; Medina Temme, Carlos R.; Rauber, Jonas; Schütt, Heiko H.; Bethge, Matthias; Wichmann, Felix A. | 2018 | arXiv | 1808.08750v3 | behavior; human; visual |
Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency | Geirhos, Robert; Meding, Kristof; Wichmann, Felix A. | 2020 | arXiv | 2006.16736v3 | behavior; human; visual |
Partial success in closing the gap between human and machine vision | Geirhos, Robert; Narayanappa, Kantharaju; Mitzkus, Benjamin; Thieringer, Tizian; Bethge, Matthias; Wichmann, Felix A.; Brendel, Wieland | 2021 | arXiv | 2106.07411v1 | brain_imaging; human; visual |
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness | Geirhos, Robert; Rubisch, Patricia; Michaelis, Claudio; Bethge, Matthias; Wichmann, Felix A.; Brendel, Wieland | 2018 | arXiv | 1811.12231v2 | behavior; human; visual |
Feedforward object-vision models only tolerate small image variations compared to human | Ghodrati, Masoud; Farzmahdi, Amirhossein; Rajaei, Karim; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi | 2014 | Frontiers in Computational Neuroscience | 10.3389/fncom.2014.00074 | brain_imaging; electrophysiology; monkey; visual |
The Roles of Supervised Machine Learning in Systems Neuroscience | Glaser, Joshua I.; Benjamin, Ari S.; Farhoodi, Roozbeh; Kording, Konrad P. | 2018 | arXiv | 1805.08239v2 | review |
Controversial stimuli: Pitting neural networks against each other as models of human cognition | Golan, Tal; Raju, Prashant C.; Kriegeskorte, Nikolaus | 2020 | Proceedings of the National Academy of Sciences of the United States of America | 10.1073/pnas.1912334117 | behavior; human; review; visual |
Visual scenes are categorized by function | Greene, Michelle R.; Baldassano, Christopher; Esteva, Andre; Beck, Diane M.; Fei-Fei, Li | 2016 | Journal of Experimental Psychology | 10.1037/xge0000129 | behavior; human; visual |
Shared spatiotemporal category representations in biological and artificial deep neural networks | Greene, Michelle R.; Hansen, Bruce C. | 2018 | PLoS computational biology | 10.1371/journal.pcbi.1006327 | brain_imaging; EEG; human; visual |
Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior | Groen, Iris I. A.; Greene, Michelle R.; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M.; Baker, Chris I. | 2018 | eLife | 10.7554/eLife.32962 | brain_imaging; fMRI; human; visual |
Convergent evolution of face spaces across human face-selective neuronal groups and deep convolutional networks | Grossman, Shany; Gaziv, Guy; Yeagle, Erin M.; Harel, Michal; Mégevand, Pierre; Groppe, David M.; Khuvis, Simon; Herrero, Jose L.; Irani, Michal; Mehta, Ashesh D.; Malach, Rafael | 2019 | Nature Communications | 10.1038/s41467-019-12623-6 | behavior; human; visual |
Perceptual Dominance in Brief Presentations of Mixed Images: Human Perception vs. Deep Neural Networks | Gruber, Liron Z.; Haruvi, Aia; Basri, Ronen; Irani, Michal | 2018 | Frontiers in Computational Neuroscience | 10.3389/fncom.2018.00057 | behavior; human; visual |
Brains on Beats | Güçlü, Umut; Thielen, Jordy; Hanke, Michael; van Gerven, Marcel A. J. | 2016 | Advances in Neural Information Processing Systems | brain_imaging; fMRI; human; visual | |
Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream | Güçlü, Umut; van Gerven, Marcel A. J. | 2015 | Journal of Neuroscience | 10.1523/JNEUROSCI.5023-14.2015 | brain_imaging; fMRI; human; visual |
Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks | Güçlü, Umut; van Gerven, Marcel A. J. | 2017 | Frontiers in Computational Neuroscience | 10.3389/fncom.2017.00007 | brain_imaging; fMRI; human |
Increasingly complex representations of natural movies across the dorsal stream are shared between subjects | Güçlü, Umut; van Gerven, Marcel A. J. | 2017 | NeuroImage | 10.1016/j.neuroimage.2015.12.036 | brain_imaging; fMRI; human; visual |
Reconstructing perceived faces from brain activations with deep adversarial neural decoding | Güçlütürk, Yagmur; Güçlü, Umut; Seeliger, Katja; Bosch, Sander; van Lier, Rob; van Gerven, Marcel A. J. | 2017 | Advances in Neural Information Processing Systems 30 (NIPS 2017) Pre-Proceedings | brain_imaging; fMRI; human; visual | |
Levels of Representation in a Deep Learning Model of Categorization | Guest, Olivia; Love, Bradley C. | 2019 | BioRxiv | 10.1101/626374 | behavior; human; visual |
Performance-optimized hierarchical models only partially predict neural responses during perceptual decision making | Gwilliams, Laura; King, Jean-Rémi | 2017 | BioRxiv | 10.1101/221630 | brain_imaging; human; MEG; visual |
Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex | Han, Kuan; Wen, Haiguang; Shi, Junxing; Lu, Kun-Han; Zhang, Yizhen; Fu, Di; Liu, Zhongming | 2019 | NeuroImage | 10.1016/j.neuroimage.2019.05.039 | brain_imaging; fMRI; human; visual |
Neuroscience-Inspired Artificial Intelligence | Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew M. | 2017 | Neuron | 10.1016/j.neuron.2017.06.011 | review |
Explicit information for category-orthogonal object properties increases along the ventral stream | Hong, Ha; Yamins, Daniel L. K.; Majaj, Najib J.; DiCarlo, James J. | 2016 | Nature Neuroscience | 10.1038/nn.4247 | brain_imaging; electrophysiology; monkey; visual |
Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features | Horikawa, Tomoyasu; Kamitani, Yukiyasu | 2017 | Frontiers in Computational Neuroscience | 10.3389/fncom.2017.00004 | brain_imaging; fMRI; human |
Generic decoding of seen and imagined objects using hierarchical visual features | Horikawa, Tomoyasu; Kamitani, Yukiyasu | 2017 | Nature Communications | 10.1038/ncomms15037 | brain_imaging; fMRI; human; visual |
The visual and semantic features that predict object memory: Concept property norms for 1,000 object images | Hovhannisyan, Mariam; Clarke, Alex; Geib, Benjamin R.; Cicchinelli, Rosalie; Monge, Zachary; Worth, Tory; Szymanski, Amanda; Cabeza, Roberto; Davis, Simon W. | 2021 | Memory & Cognition | 10.3758/s13421-020-01130-5 | behavior; human; semantic; visual |
Comparing the Visual Representations and Performance of Humans and Deep Neural Networks | Jacobs, Robert A.; Bates, Christopher J. | 2019 | Current Directions in Psychological Science | 10.1177/0963721418801342 | human; learning; review; visual |
Noise-robust recognition of objects by humans and deep neural networks | Jang, Hojin; McCormack, Devin; Tong, Frank | 2021 | BioRxiv | 10.1101/2020.08.03.234625 | behavior; fMRI; human; visual |
Convolutional neural networks trained with a developmental sequence of blurry to clear images reveal core differences between face and object processing | Jang, Hojin; Tong, Frank | 2021 | BioRxiv | 10.1101/2021.05.25.444835 | behavior; human; visual |
General object-based features account for letter perception better than specialized letter features | Janini, Daniel; Hamblin, Chris; Deza, Arturo; Konkle, Talia | 2021 | BioRxiv | 10.1101/2021.04.21.440772 | behavior; human; semantic; visual |
Relating Simple Sentence Representations in Deep Neural Networks and the Brain | Jat, Sharmistha; Tang, Hao; Talukdar, Partha; Mitchell, Tom | 2019 | Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics | 10.18653/v1/P19-1507 | brain_imaging; human; MEG; semantic |
Extracting low-dimensional psychological representations from convolutional neural networks | Jha, Aditi; Peterson, Joshua C.; Griffiths, Thomas L. | 2020 | arXiv | 2005.14363v1 | behavior; human; review; visual |
Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments | Jozwik, Kamila M.; Kriegeskorte, Nikolaus; Storrs, Katherine R.; Mur, Marieke | 2017 | Frontiers in Psychology | 10.3389/fpsyg.2017.01726 | behavior; human; visual |
Face dissimilarity judgements are predicted by representational distance in deep neural networks and principal-component face space | Jozwik, Kamila M.; O’Keeffe, Jonathan; Storrs, Katherine R.; Kriegeskorte, Nikolaus | 2021 | BioRxiv | 10.1101/2021.04.09.438859 | behavior; human; visual |
To find better neural network models of human vision, find better neural network models of primate vision | Jozwik, Kamila M.; Schrimpf, Martin; Kanwisher, Nancy; DiCarlo, James J. | 2019 | BioRxiv | 10.1101/688390 | brain_imaging; electrophysiology; human; monkey; visual |
Shape Selectivity of Middle Superior Temporal Sulcus Body Patch Neurons | Kalfas, Ioannis; Kumar, Satwant; Vogels, Rufin | 2017 | eNeuro | 10.1523/ENEURO.0113-17.2017 | brain_imaging; electrophysiology; monkey; visual |
Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior | Kar, Kohitij; Kubilius, Jonas; Schmidt, Kailyn; Issa, Elias B.; DiCarlo, James J. | 2019 | Nature Neuroscience | 10.1038/s41593-019-0392-5 | brain_imaging; electrophysiology; monkey; visual |
Hard-wired feed-forward visual mechanisms of the brain compensate for affine variations in object recognition | Karimi-Rouzbahani, Hamid; Bagheri, Nasour; Ebrahimpour, Reza | 2017 | Neuroscience | 10.1016/j.neuroscience.2017.02.050 | brain_imaging; EEG; human; visual |
Invariant object recognition is a personalized selection of invariant features in humans, not simply explained by hierarchical feed-forward vision models | Karimi-Rouzbahani, Hamid; Bagheri, Nasour; Ebrahimpour, Reza | 2017 | Scientific Reports | 10.1038/s41598-017-13756-8 | behavior; human; visual |
How do targets, nontargets, and scene context influence real-world object detection? | Katti, Harish; Peelen, Marius V.; Arun, Sripati P. | 2017 | Attention, Perception & Psychophysics | 10.3758/s13414-017-1359-9 | behavior; human; visual |
Machine vision benefits from human contextual expectations | Katti, Harish; Peelen, Marius V.; Arun, Sripati P. | 2019 | Scientific Reports | 10.1038/s41598-018-38427-0 | behavior; brain_imaging; human; visual |
Principles for models of neural information processing | Kay, Kendrick N. | 2018 | NeuroImage | 10.1016/j.neuroimage.2017.08.016 | review |
Deep neural network models of sensory systems: windows onto the role of task constraints | Kell, Alexander J. E.; McDermott, Josh H. | 2019 | Current Opinion in Neurobiology | 10.1016/j.conb.2019.02.003 | brain_imaging; fMRI; human; review |
A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy | Kell, Alexander J. E.; Yamins, Daniel L. K.; Shook, Erica N.; Norman-Haignere, Sam V.; McDermott, Josh H. | 2018 | Neuron | 10.1016/j.neuron.2018.03.044 | brain_imaging; fMRI; human |
Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models | Khaligh-Razavi, Seyed-Mahdi; Henriksson, Linda; Kay, Kendrick N.; Kriegeskorte, Nikolaus | 2017 | Journal of Mathematical Psychology | 10.1016/j.jmp.2016.10.007 | backpropagation; brain_imaging; fMRI; human |
Deep supervised, but not unsupervised, models may explain IT cortical representation | Khaligh-Razavi, Seyed-Mahdi; Kriegeskorte, Nikolaus | 2014 | PLoS computational biology | 10.1371/journal.pcbi.1003915 | brain_imaging; electrophysiology; monkey; visual |
Humans and Deep Networks Largely Agree on Which Kinds of Variation Make Object Recognition Harder | Kheradpisheh, Saeed R.; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée | 2016 | Frontiers in Computational Neuroscience | 10.3389/fncom.2016.00092 | behavior; human; visual |
Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition | Kheradpisheh, Saeed R.; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée | 2016 | Scientific Reports | 10.1038/srep32672 | behavior; human; visual |
Deep neural networks in computational neuroscience | Kietzmann, Tim C.; McClure, Patrick; Kriegeskorte, Nikolaus | 2019 | Oxford Research Encyclopaedia of Neuroscience | 10.1093/acrefore/9780190264086.013.46 | review |
Recurrence is required to capture the representational dynamics of the human visual system | Kietzmann, Tim C.; Spoerer, Courtney J.; Sörensen, Lynn K. A.; Cichy, Radoslaw M.; Hauk, Olaf; Kriegeskorte, Nikolaus | 2019 | Proceedings of the National Academy of Sciences of the United States of America | 10.1073/pnas.1905544116 | brain_imaging; human; MEG; visual |
Neural Networks Trained on Natural Scenes Exhibit Gestalt Closure | Kim, Been; Reif, Emily; Wattenberg, Martin; Bengio, Samy; Mozer, Michael C. | 2019 | arXiv | 1903.01069v4 | behavior; human; visual |
Using deep learning to reveal the neural code for images in primary visual cortex | Kindel, William F.; Christensen, Elijah D.; Zylberberg, Joel | 2017 | arXiv | 1706.06208v1 | brain_imaging; electrophysiology; monkey; visual |
Neural system identification for large populations separating “what” and “where” | Klindt, David; Ecker, Alexander S.; Euler, Thomas; Bethge, Matthias | 2017 | Advances in Neural Information Processing Systems | brain_imaging; rodent; visual | |
Image memorability is predicted at different stages of a convolutional neural network | Koch, Griffin E.; Akpan, Essang; Coutanche, Marc N. | 2020 | BioRxiv | 10.1101/834796 | behavior; human; visual |
Time-resolved correspondences between deep neural network layers and EEG measurements in object processing | Kong, Nathan C. L.; Kaneshiro, Blair; Yamins, Daniel L. K.; Norcia, Anthony M. | 2020 | Vision Research | 10.1016/j.visres.2020.04.005 | brain_imaging; EEG; human; visual |
Beyond category-supervision: instance-level contrastive learning models predict human visual system responses to objects | Konkle, Talia; Alvarez, George A. | 2021 | BioRxiv | 10.1101/2021.05.28.446118 | brain_imaging; fMRI; human; visual |
Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing | Kriegeskorte, Nikolaus | 2015 | Annual Review of Vision Science | 10.1146/annurev-vision-082114-035447 | review; visual |
Cognitive computational neuroscience | Kriegeskorte, Nikolaus; Douglas, Pamela K. | 2018 | Nature Neuroscience | 10.1038/s41593-018-0210-5 | review |
Neural network models and deep learning | Kriegeskorte, Nikolaus; Golan, Tal | 2019 | Current Biology | 10.1016/j.cub.2019.02.034 | backpropagation |
Deep Neural Networks as a Computational Model for Human Shape Sensitivity | Kubilius, Jonas; Bracci, Stefania; Op de Beeck, Hans | 2016 | PLoS computational biology | 10.1371/journal.pcbi.1004896 | behavior; human; visual |
Can deep neural networks rival human ability to generalize in core object recognition | Kubilius, Jonas; Kar, Kohitij; Schmidt, Kailyn; DiCarlo, James J. | 2018 | Cognitive Computational Neuroscience | brain_imaging; human; visual | |
Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs | Kubilius, Jonas; Schrimpf, Martin; Kar, Kohitij; Hong, Ha; Majaj, Najib J.; Rajalingham, Rishi; Issa, Elias B.; Bashivan, Pouya; Prescott-Roy, Jonathan; Schmidt, Kailyn; Nayebi, Aran; Bear, Daniel; Yamins, Daniel L. K.; DiCarlo, James J. | 2019 | arXiv | 1909.06161v2 | brain_imaging; electrophysiology; human; monkey; visual |
Activations of deep convolutional neural networks are aligned with gamma band activity of human visual cortex | Kuzovkin, Ilya; Vicente, Raul; Petton, Mathilde; Lachaux, Jean-Philippe; Baciu, Monica; Kahane, Philippe; Rheims, Sylvain; Vidal, Juan R.; Aru, Jaan | 2018 | Communications Biology | 10.1038/s42003-018-0110-y | brain_imaging; electrophysiology; human; visual |
Methods for computing the maximum performance of computational models of fMRI responses | Lage-Castellanos, Agustin; Valente, Giancarlo; Formisano, Elia; Martino, Federico de | 2019 | PLoS computational biology | 10.1371/journal.pcbi.1006397 | brain_imaging; human; visual |
Building machines that learn and think like people | Lake, Brenden M.; Ullman, Tomer D.; Tenenbaum, Joshua B.; Gershman, Samuel J. | 2017 | The Behavioral and Brain Sciences | 10.1017/S0140525X16001837 | review |
Deep neural networks predict category typicality ratings for images | Lake, Brenden M.; Zaremba, Wojciech; Fergus, Rob; Gureckis, Todd M. | 2015 | Cognitive Science | behavior; human; visual | |
Passive attention in artificial neural networks predicts human visual selectivity | Langlois, Thomas A.; Charles Zhao, H.; Grant, Erin; Dasgupta, Ishita; Griffiths, Thomas L.; Jacoby, Nori | 2021 | arXiv | 2107.07013v1 | behavior; brain_imaging; human; visual |
Deep learning | LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey | 2015 | Nature | 10.1038/nature14539 | backpropagation |
Topographic deep artificial neural networks reproduce the hallmarks of the primate inferior temporal cortex face processing network | Lee, Hyodong; Margalit, Eshed; Jozwik, Kamila M.; Cohen, Michael A.; Kanwisher, Nancy; Yamins, Daniel L. K.; DiCarlo, James J. | 2020 | BioRxiv | 10.1101/2020.07.09.185116 | brain_imaging; electrophysiology; monkey; visual |
Psychlab: A Psychology Laboratory for Deep Reinforcement Learning Agents | Leibo, Joel Z.; Masson d’Autume, Cyprien de; Zoran, Daniel; Amos, David; Beattie, Charles; Anderson, Keith; Castañeda, Antonio García; Sanchez, Manuel; Green, Simon; Gruslys, Audrunas; Legg, Shane; Hassabis, Demis; Botvinick, Matthew M. | 2018 | arXiv | 1801.08116v2 | behavior; human; visual |
Tuning in scene-preferring cortex for mid-level visual features gives rise to selectivity across multiple levels of stimulus complexity | Li, Shi Pui Donald; Bonner, Michael F. | 2021 | BioRxiv | 10.1101/2021.09.24.461733 | brain_imaging; fMRI; human; visual |
Backpropagation and the brain | Lillicrap, Timothy P.; Santoro, Adam; Marris, Luke; Akerman, Colin J.; Hinton, Geoffrey | 2020 | Nature reviews. Neuroscience | 10.1038/s41583-020-0277-3 | backpropagation; learning; review |
Transfer of View-manifold Learning to Similarity Perception of Novel Objects | Lin, Xingyu; Wang, Hao; Li, Zhihao; Zhang, Yimeng; Yuille, Alan; Lee, Tai Sing | 2017 | arXiv | 1704.00033v1 | behavior; human; visual |
Conscious perception of natural images is constrained by category-related visual features | Lindh, Daniel; Sligte, Ilja G.; Assecondi, Sara; Shapiro, Kimron L.; Charest, Ian | 2019 | Nature Communications | 10.1038/s41467-019-12135-3 | behavior; human; visual |
Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future | Lindsay, Grace W. | 2020 | Journal of Cognitive Neuroscience | 10.1162/jocn\_a\_01544 | human; review; visual |
How biological attention mechanisms improve task performance in a large-scale visual system model | Lindsay, Grace W.; Miller, Kenneth D. | 2018 | eLife | 10.7554/eLife.38105 | behavior; human; visual |
Learning what and where to attend | Linsley, Drew; Shiebler, Dan; Eberhardt, Sven; Serre, Thomas | 2018 | arXiv | 1805.08819v4 | behavior; human; visual |
Mid-level visual features underlie the high-level categorical organization of the ventral stream | Long, Bria; Yu, Chen-Ping; Konkle, Talia | 2018 | Proceedings of the National Academy of Sciences of the United States of America | 10.1073/pnas.1719616115 | brain_imaging; fMRI; human; visual |
A comparative biology approach to DNN modeling of vision: A focus on differences, not similarities | Lonnqvist, Ben; Bornet, Alban; Doerig, Adrien; Herzog, Michael H. | 2021 | Journal of Vision | 10.1167/jov.21.10.17 | human; visual |
A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception | Lotter, William; Kreiman, Gabriel; Cox, David D. | 2018 | arXiv | 1805.10734 | brain_imaging; electrophysiology; monkey; visual |
Visual properties and memorising scenes: Effects of image-space sparseness and uniformity | Lukavský, Jiří; Děchtěrenko, Filip | 2017 | Attention, Perception & Psychophysics | 10.3758/s13414-017-1375-9 | behavior; human; visual |
Deep learning-Using machine learning to study biological vision | Majaj, Najib J.; Pelli, Denis G. | 2018 | Journal of Vision | 10.1167/18.13.2 | review; visual |
Toward an Integration of Deep Learning and Neuroscience | Marblestone, Adam H.; Wayne, Greg; Kording, Konrad P. | 2016 | Frontiers in Computational Neuroscience | 10.3389/fncom.2016.00094 | human; learning; review |
Simulating a primary visual cortex at the front of CNNs improves robustness to image perturbations | Marques, T.; Schrimpf, Martin; Geiger, Franziska; Cox, David D.; DiCarlo, James J. | 2020 | BioRxiv | 10.1101/2020.06.16.154542 | brain_imaging; electrophysiology; monkey; visual |
Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks | Martin Cichy, Radoslaw; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude | 2017 | NeuroImage | 10.1016/j.neuroimage.2016.03.063 | brain_imaging; human; MEG; visual |
Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization | Masse, Nicolas Y.; Grant, Gregory D.; Freedman, David J. | 2018 | Proceedings of the National Academy of Sciences of the United States of America | 10.1073/pnas.1803839115 | behavior; visual |
An ecologically motivated image dataset for deep learning yields better models of human vision | Mehrer, Johannes; Spoerer, Courtney J.; Jones, Emer C.; Kriegeskorte, Nikolaus; Kietzmann, Tim C. | 2021 | Proceedings of the National Academy of Sciences of the United States of America | 10.1073/pnas.2011417118 | brain_imaging; fMRI; human; visual |
Individual differences among deep neural network models | Mehrer, Johannes; Spoerer, Courtney J.; Kriegeskorte, Nikolaus; Kietzmann, Tim C. | 2020 | Nature Communications | 10.1038/s41467-020-19632-w | brain_imaging; visual |
Computational models of category-selective brain regions enable high-throughput tests of selectivity | Murty, N. Apurva Ratan; Bashivan, Pouya; Abate, Alex; DiCarlo, James J.; Kanwisher, Nancy | 2021 | Nature Communications | 10.1038/s41467-021-25409-6 | behavior; brain_imaging, fMRI; human; visual |
THINGSvision: a Python toolbox for streamlining the extraction of activations from deep neural networks | Muttenthaler, Lukas; Hebart, Martin N. | 2021 | Frontiers in Neuroinformatics | 10.3389/fninf.2021.679838 | brain_imaging; fMRI; human; visual |
Task-Driven Convolutional Recurrent Models of the Visual System | Nayebi, Aran; Bear, Daniel; Kubilius, Jonas; Kar, Kohitij; Ganguli, Surya; Sussillo, David; DiCarlo, James J.; Yamins, Daniel L. K. | 2018 | arXiv | 1807.00053v2 | brain_imaging; monkey; visual |
Unsupervised Models of Mouse Visual Cortex | Nayebi, Aran; Kong, Nathan C. L.; Zhuang, Chengxu; Norcia, Anthony M.; Gardner, Justin L.; Yamins, Daniel L. K. | 2021 | BioRxiv | 10.1101/2021.06.16.448730 | brain_imaging; electrophysiology; rodent; visual |
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images | Nguyen, Anh; Yosinski, Jason; Clune, Jeff | 2014 | Proceedings of the IEEE conference on Computer Vision and Pattern Recognition | behavior; visual | |
Deep Neural Network Models of Object Recognition Exhibit Human-Like Limitations when Performing Visual Search Tasks | Nicholson, David A.; Prinz, Astrid A. | 2021 | BioRxiv | 10.1101/2020.10.26.354258 | behavior; human; visual |
Brain Hierarchy Score: Which Deep Neural Networks are Hierarchically Brain-Like? | Nonaka, Soma; Majima, Kei; Aoki, Shuntaro C.; Kamitani, Yukiyasu | 2020 | iScience | 10.2139/ssrn.3664362 | brain_imaging; fMRI; human; visual |
Predicting eye movement patterns from fMRI responses to natural scenes | O’Connell, Thomas P.; Chun, Marvin M. | 2018 | Nature Communications | 10.1038/s41467-018-07471-9 | brain_imaging; fMRI; human; visual |
Adapting Deep Network Features to Capture Psychological Representations | Peterson, Joshua C.; Abbott, Joshua T.; Griffiths, Thomas L. | 2016 | arXiv | 1608.02164v1 | behavior; human; visual |
Evaluating (and Improving) the Correspondence Between Deep Neural Networks and Human Representations | Peterson, Joshua C.; Abbott, Joshua T.; Griffiths, Thomas L. | 2018 | Cognitive Science | 10.1111/cogs.12670 | behavior; human; visual |
Human uncertainty makes classification more robust | Peterson, Joshua C.; Battleday, Ruairidh M.; Griffiths, Thomas L.; Russakovsky, Olga | 2019 | Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) | behavior; human; semantic; visual | |
Capturing human category representations by sampling in deep feature spaces | Peterson, Joshua C.; Suchow, Jordan W.; Aghi, Krisha; Ku, Alexander Y.; Griffiths, Thomas L. | 2018 | arXiv | 1805.07644v1 | behavior; human; visual |
Sensory processing and categorization in cortical and deep neural networks | Pinotsis, Dimitris A.; Siegel, Markus; Miller, Earl K. | 2019 | NeuroImage | 10.1016/j.neuroimage.2019.116118 | brain_imaging; electrophysiology; monkey; visual |
Posterior Inferotemporal Cortex Cells Use Multiple Input Pathways for Shape Encoding | Ponce, Carlos R.; Lomber, Stephen G.; Livingstone, Margaret S. | 2017 | Journal of Neuroscience | 10.1523/JNEUROSCI.2674-16.2017 | behavior; monkey; visual |
Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences | Ponce, Carlos R.; Xiao, Will; Schade, Peter F.; Hartmann, Till S.; Kreiman, Gabriel; Livingstone, Margaret S. | 2019 | Cell | 10.1016/j.cell.2019.04.005 | brain_imaging; electrophysiology; monkey; visual |
Human peripheral blur is optimal for object recognition | Pramod, Raghavendraro T.; Katti, Harish; Arun, Sripati P. | 2018 | arXiv | 1807.08476v3 | behavior; human; visual |
Improving Machine Vision using Human Perceptual Representations: The Case of Planar Reflection Symmetry for Object Classification | Pramod, Raghavendraro T.; Sp, Arun | 2020 | IEEE Transactions on Pattern Analysis and Machine Intelligence | 10.1109/TPAMI.2020.3008107 | brain_imaging; human; visual |
Accurate reconstruction of image stimuli from human fMRI based on the decoding model with capsule network architecture | Qiao, Kai; Zhang, Chi; Wang, Linyuan; Yan, Bin; Chen, Jian; Zeng, Lei; Tong, Li | 2018 | arXiv | 1801.00602v1 | brain_imaging; fMRI; human; visual |
Beyond core object recognition: Recurrent processes account for object recognition under occlusion | Rajaei, Karim; Mohsenzadeh, Yalda; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi | 2019 | PLoS computational biology | 10.1371/journal.pcbi.1007001 | brain_imaging; human; MEG; visual |
Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks | Rajalingham, Rishi; Issa, Elias B.; Bashivan, Pouya; Kar, Kohitij; Schmidt, Kailyn; DiCarlo, James J. | 2018 | Journal of Neuroscience | 10.1523/JNEUROSCI.0388-18.2018 | behavior; brain_imaging; human; monkey; visual |
The inferior temporal cortex is a potential cortical precursor of orthographic processing in untrained monkeys | Rajalingham, Rishi; Kar, Kohitij; Sanghavi, Sachi; Dehaene, Stanislas; DiCarlo, James J. | 2020 | Nature Communications | 10.1038/s41467-020-17714-3 | brain_imaging; electrophysiology; monkey; semantic; visual |
Comparison of Object Recognition Behavior in Human and Monkey | Rajalingham, Rishi; Schmidt, Kailyn; DiCarlo, James J. | 2015 | Journal of Neuroscience | 10.1523/JNEUROSCI.0573-15.2015 | behavior; human; monkey; visual |
Characterizing the temporal dynamics of object recognition by deep neural networks : role of depth | Ramakrishnan, Kandan; Groen, Iris I. A.; Smeulders, Arnold W. M.; Steven Scholte, H.; Ghebreab, Sennay | 2017 | BioRxiv | 10.1101/178541 | brain_imaging; EEG; fMRI; human; visual |
A Balanced Comparison of Object Invariances in Monkey IT Neurons | Ratan Murty, N. Apurva; Arun, Sripati P. | 2017 | eNeuro | 10.1523/ENEURO.0333-16.2017 | brain_imaging; electrophysiology; monkey; visual |
Multiplicative mixing of object identity and image attributes in single inferior temporal neurons | Ratan Murty, N. Apurva; Arun, Sripati P. | 2018 | Proceedings of the National Academy of Sciences of the United States of America | 10.1073/pnas.1714287115 | behavior; brain_imaging; electrophysiology; monkey; visual |
Optimizing deep video representation to match brain activity | Richard, Hugo; Pinho, Ana; Thirion, Bertrand; Charpiat, Guillaume | 2018 | arXiv | 1809.02440v1 | behavior; fMRI; human; visual |
A deep learning framework for neuroscience | Richards, Blake A.; Lillicrap, Timothy P.; Beaudoin, Philippe; Bengio, Yoshua; Bogacz, Rafal; Christensen, Amelia; Clopath, Claudia; Costa, Rui Ponte; Berker, Archy de; Ganguli, Surya; Gillon, Colleen J.; Hafner, Danijar; Kepecs, Adam; Kriegeskorte, Nikolaus; Latham, Peter; Lindsay, Grace W.; Miller, Kenneth D.; Naud, Richard; Pack, Christopher C.; Poirazi, Panayiota; Roelfsema, Pieter R.; Sacramento, João; Saxe, Andrew; Scellier, Benjamin; Schapiro, Anna C.; Senn, Walter; Wayne, Greg; Yamins, Daniel L. K.; Zenke, Friedemann; Zylberberg, Joel; Therien, Denis; Kording, Konrad P. | 2019 | Nature Neuroscience | 10.1038/s41593-019-0520-2 | human; review; visual |
Control of synaptic plasticity in deep cortical networks | Roelfsema, Pieter R.; Holtmaat, Anthony | 2018 | Nature reviews. Neuroscience | 10.1038/nrn.2018.6 | human; learning; review; visual |
Totally Looks Like - How Humans Compare, Compared to Machines | Rosenfeld, Amir; Solbach, Markus D.; Tsotsos, John K. | 2018 | arXiv | 1803.01485v3 | behavior; human; visual |
Training Deep Networks to Construct a Psychological Feature Space for a Natural-Object Category Domain | Sanders, Craig A.; Nosofsky, Robert M. | 2020 | Computational Brain & Behavior | 10.1007/s42113-020-00073-z | behavior; human; visual |
If deep learning is the answer, what is the question? | Saxe, Andrew; Nelli, Stephanie; Summerfield, Christopher | 2021 | Nature reviews. Neuroscience | 10.1038/s41583-020-00395-8 | review; visual |
Visual pathways from the perspective of cost functions and multi-task deep neural networks | Scholte, H. Steven; Losch, Max M.; Ramakrishnan, Kandan; Haan, Edward H. F. de; Bohte, Sander M. | 2018 | Cortex | 10.1016/j.cortex.2017.09.019 | brain_imaging; review; visual |
Brain-score: Which artificial neural network for object recognition is most brain-like? | Schrimpf, Martin; Kubilius, Jonas; Hong, Ha; Majaj, Najib J.; Rajalingham, Rishi; Issa, Elias B.; Kar, Kohitij; Bashivan, Pouya; Prescott-Roy, Jonathan; Geiger, Franziska; Schmidt, Kailyn; Yamins, Daniel L. K.; DiCarlo, James J. | 2020 | BioRxiv | 10.1101/407007v2.abstract | brain_imaging; electrophysiology; human; monkey; visual |
End-to-end neural system identification with neural information flow | Seeliger, Katja; Ambrogioni, L.; Güçlütürk, Yagmur; van den Bulk, L. M.; Güçlü, Umut; van Gerven, Marcel A. J. | 2021 | PLoS computational biology | 10.1371/journal.pcbi.1008558 | brain_imaging; fMRI; human; visual |
Convolutional neural network-based encoding and decoding of visual object recognition in space and time | Seeliger, Katja; Fritsche, M.; Güçlü, Umut; Schoenmakers, S.; Schoffelen, J-M; Bosch, S. E.; van Gerven, Marcel A. J. | 2018 | NeuroImage | 10.1016/j.neuroimage.2017.07.018 | brain_imaging; human; MEG; visual |
Generative adversarial networks for reconstructing natural images from brain activity | Seeliger, Katja; Güçlü, Umut; Ambrogioni, L.; Güçlütürk, Yagmur; van Gerven, Marcel A. J. | 2018 | NeuroImage | 10.1016/j.neuroimage.2018.07.043 | brain_imaging; fMRI; human; visual |
Deep Learning: The Good, the Bad, and the Ugly | Serre, Thomas | 2019 | Annual Review of Vision Science | 10.1146/annurev-vision-091718-014951 | human; review; visual |
Deep image reconstruction from human brain activity | Shen, Guohua; Horikawa, Tomoyasu; Majima, Kei; Kamitani, Yukiyasu | 2019 | PLoS computational biology | 10.1371/journal.pcbi.1006633 | brain_imaging; fMRI; human; visual |
Comparison Against Task Driven Artificial Neural Networks Reveals Functional Organization of Mouse Visual Cortex | Shi, Jianghong; Shea-Brown, Eric; Buice, Michael A. | 2019 | arXiv | 1911.07986v1 | brain_imaging; electrophysiology; rodent; visual |
Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision | Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming | 2018 | Human brain mapping | 10.1002/hbm.24006 | brain_imaging; fMRI; human; visual |
From photos to sketches - how humans and deep neural networks process objects across different levels of visual abstraction | Singer, Johannes J. D.; Seeliger, Katja; Kietzmann, Tim C.; Hebart, Martin N. | 2021 | PsyArXiv | 10.31234/osf.io/xg2uy | behavior; human; visual |
End-to-end Deep Prototype and Exemplar Models for Predicting Human Behavior | Singh, Pulkit; Peterson, Joshua C.; Battleday, Ruairidh M.; Griffiths, Thomas L. | 2020 | arXiv | 2007.08723v1 | behavior; human; visual |
Stimulus domain transfer in recurrent models for large scale cortical population prediction on video | Sinz, Fabian H.; Ecker, Alexander S.; Fahey, Paul G.; Walker, Edgar Y.; Cobos, Erick; Froudarakis, Emmanouil; Yatsenko, Dimitri; Pitkow, Xaq; Reimer, Jacob; Tolias, Andreas S. | 2018 | BioRxiv | 10.1101/452672 | brain_imaging; electrophysiology; monkey; rodent; visual |
Engineering a Less Artificial Intelligence | Sinz, Fabian H.; Pitkow, Xaq; Reimer, Jacob; Bethge, Matthias; Tolias, Andreas S. | 2019 | Neuron | 10.1016/j.neuron.2019.08.034 | review |
Reward-based training of recurrent neural networks for cognitive and value-based tasks | Song, H. Francis; Yang, Guangyu R.; Wang, Xiao-Jing | 2017 | eLife | 10.7554/eLife.21492 | behavior; learning |
The Geometry of Concept Learning | Sorscher, Ben; Ganguli, Surya; Sompolinsky, Haim | 2021 | BioRxiv | 10.1101/2021.03.21.436284 | learning; review; visual |
Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision | Spoerer, Courtney J.; Kietzmann, Tim C.; Mehrer, Johannes; Charest, Ian; Kriegeskorte, Nikolaus | 2020 | PLoS computational biology | 10.1371/journal.pcbi.1008215 | behavior; human; visual |
The feature-weighted receptive field: an interpretable encoding model for complex feature spaces | St-Yves, Ghislain; Naselaris, Thomas | 2018 | NeuroImage | 10.1016/j.neuroimage.2017.06.035 | brain_imaging; fMRI; human; visual |
Diverse deep neural networks all predict human IT well, after training and fitting | Storrs, Katherine R.; Kietzmann, Tim C.; Walther, Alexander; Mehrer, Johannes; Kriegeskorte, Nikolaus | 2020 | BioRxiv | 10.1101/2020.05.07.082743 | brain_imaging; fMRI; human; visual |
Deep Learning for Cognitive Neuroscience | Storrs, Katherine R.; Kriegeskorte, Nikolaus | 2019 | arXiv | 1903.01458v1 | review |
A Deep-Dream Virtual Reality Platform for Studying Altered Perceptual Phenomenology | Suzuki, Keisuke; Roseboom, Warrick; Schwartzman, David J.; Seth, Anil K. | 2017 | Scientific Reports | 10.1038/s41598-017-16316-2 | behavior; human; visual |
Invariant recognition drives neural representations of action sequences | Tacchetti, Andrea; Isik, Leyla; Poggio, Tomaso A. | 2017 | PLoS computational biology | 10.1371/journal.pcbi.1005859 | brain_imaging; electrophysiology; human; MEG; visual |
Invariant Recognition Shapes Neural Representations of Visual Input | Tacchetti, Andrea; Isik, Leyla; Poggio, Tomaso A. | 2018 | Annual Review of Vision Science | 10.1146/annurev-vision-091517-034103 | brain_imaging; human; review; visual |
Assessing Neural Network Scene Classification from Degraded Images | Tadros, Timothy; Cullen, Nicholas C.; Greene, Michelle R.; Cooper, Emily A. | 2019 | Association for Computing Machinery | 10.1145/3342349 | behavior; human; visual |
Recurrent computations for visual pattern completion | Tang, Hanlin; Schrimpf, Martin; Lotter, William; Moerman, Charlotte; Paredes, Ana; Ortega Caro, Josue; Hardesty, Walter; Cox, David D.; Kreiman, Gabriel | 2018 | Proceedings of the National Academy of Sciences of the United States of America | 10.1073/pnas.1719397115 | behavior; brain_imaging; human; visual |
Similarities and differences between stimulus tuning in the inferotemporal visual cortex and convolutional networks | Tripp, Bryan | 2016 | arXiv | 1612.06975v1 | brain_imaging; visual |
Characterisation of nonlinear receptive fields of visual neurons by convolutional neural network | Ukita, Jumpei; Yoshida, Takashi; Ohki, Kenichi | 2019 | Scientific Reports | 10.1038/s41598-019-40535-4 | brain_imaging; electrophysiology; rodent; visual |
Visual perception of liquids: Insights from deep neural networks | van Assen, Jan Jaap R.; Nishida, Shin’ya; Fleming, Roland W. | 2020 | PLoS computational biology | 10.1371/journal.pcbi.1008018 | behavior; human; visual |
Seeing eye-to-eye? A comparison of object recognition performance in humans and deep convolutional neural networks under image manipulation | van Dyck, Leonard E.; Gruber, Walter R. | 2020 | arXiv | 2007.06294v2 | behavior; human; learning; visual |
Perception Science in the Age of Deep Neural Networks | VanRullen, Rufin | 2017 | Frontiers in Psychology | 10.3389/fpsyg.2017.00142 | review |
Reconstructing faces from fMRI patterns using deep generative neural networks | VanRullen, Rufin; Reddy, Leila | 2019 | Communications Biology | 10.1038/s42003-019-0438-y | brain_imaging; fMRI; human; visual |
Incorporating intrinsic suppression in deep neural networks captures dynamics of adaptation in neurophysiology and perception | Vinken, Kasper; Boix, Xavier; Kreiman, Gabriel | 2020 | Science Advances | 10.1126/sciadv.abd4205 | brain_imaging; human; visual |
Deep Neural Networks Point to Mid-level Complexity of Rodent Object Vision | Vinken, Kasper; Op de Beeck, Hans | 2020 | BioRxiv | 10.1101/2020.02.08.940189 | brain_imaging; electrophysiology; rodent; visual |
Using deep neural networks to evaluate object vision tasks in rats | Vinken, Kasper; Op de Beeck, Hans | 2021 | PLoS computational biology | 10.1371/journal.pcbi.1008714 | behavior; brain_imaging; rodent; visual |
A Convolutional Subunit Model for Neuronal Responses in Macaque V1 | Vintch, Brett; Movshon, J. Anthony; Simoncelli, Eero P. | 2015 | Journal of Neuroscience | 10.1523/JNEUROSCI.2815-13.2015 | brain_imaging; electrophysiology; monkey; visual |
Correspondence between Monkey Visual Cortices and Layers of a Saliency Map Model Based on a Deep Convolutional Neural Network for Representations of Natural Images | Wagatsuma, Nobuhiko; Hidaka, Akinori; Tamura, Hiroshi | 2021 | eNeuro | 10.1523/ENEURO.0200-20.2020 | brain_imaging; electrophysiology; monkey; visual |
A neural basis of probabilistic computation in visual cortex | Walker, Edgar Y.; Cotton, R. James; Ma, Wei Ji; Tolias, Andreas S. | 2020 | Nature Neuroscience | 10.1038/s41593-019-0554-5 | behavior; brain_imaging; electrophysiology; monkey; visual |
A parametric texture model based on deep convolutional features closely matches texture appearance for humans | Wallis, Thomas S. A.; Funke, Christina M.; Ecker, Alexander S.; Gatys, Leon A.; Wichmann, Felix A.; Bethge, Matthias | 2017 | Journal of Vision | 10.1167/17.12.5 | behavior; human; visual |
Image content is more important than Bouma’s Law for scene metamers | Wallis, Thomas S. A.; Funke, Christina M.; Ecker, Alexander S.; Gatys, Leon A.; Wichmann, Felix A.; Bethge, Matthias | 2019 | eLife | 10.7554/eLife.42512 | behavior; human; visual |
Recent advances in understanding object recognition in the human brain: deep neural networks, temporal dynamics, and context | Wardle, Susan G.; Baker, Chris I. | 2020 | F1000Research | 10.12688/f1000research.22296.1 | brain_imaging; fMRI; human; MEG; visual |
Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction | Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta | 2018 | Frontiers in Psychology | 10.3389/fpsyg.2018.00345 | behavior; human; visual |
Transferring and generalizing deep-learning-based neural encoding models across subjects | Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming | 2018 | NeuroImage | 10.1016/j.neuroimage.2018.04.053 | brain_imaging; fMRI; human; visual |
Deep Residual Network Predicts Cortical Representation and Organization of Visual Features for Rapid Categorization | Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming | 2018 | Scientific Reports | 10.1038/s41598-018-22160-9 | brain_imaging; fMRI; human; visual |
Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision | Wen, Haiguang; Shi, Junxing; Zhang, Yizhen; Lu, Kun-Han; Cao, Jiayue; Liu, Zhongming | 2018 | Cerebral Cortex | 10.1093/cercor/bhx268 | brain_imaging; fMRI; human; semantic |
Deep Neural Networks for Modeling Visual Perceptual Learning | Wenliang, Li K.; Seitz, Aaron R. | 2018 | Journal of Neuroscience | 10.1523/JNEUROSCI.1620-17.2018 | behavior; brain_imaging; electrophysiology; fMRI; human; monkey; visual |
Theories of Error Back-Propagation in the Brain | Whittington, James C. R.; Bogacz, Rafal | 2019 | Trends in Cognitive Sciences | 10.1016/j.tics.2018.12.005 | backpropagation; learning; review |
Methods and measurements to compare men against machines | Wichmann, Felix A.; Janssen, David H. J.; Geirhos, Robert; Aguilar, Guillermo; Schütt, Heiko H.; Maertens, Marianne; Bethge, Matthias | 2017 | Electronic Imaging, Human Vision and Electronic Imaging | 10.2352/ISSN.2470-1173.2017.14.HVEI-113 | behavior; human; visual |
Explainable Deep Learning: A Field Guide for the Uninitiated | Xie, Ning; Ras, Gabrielle; van Gerven, Marcel A. J.; Doran, Derek | 2020 | arXiv | 2004.14545v1 | review |
Convolutional neural networks do not develop brain-like transformation tolerant visual representations | Xu, Yaoda; Vaziri-Pashkam, Maryam | 2021 | BioRxiv | 10.1101/2020.08.11.246934 | behavior; brain_imaging; fMRI; human; visual |
Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks | Xu, Yaoda; Vaziri-Pashkam, Maryam | 2021 | Journal of Neuroscience | 10.1523/JNEUROSCI.1993-20.2021 | brain_imaging; fMRI; human; visual |
Limits to visual representational correspondence between convolutional neural networks and the human brain | Xu, Yaoda; Vaziri-Pashkam, Maryam | 2021 | Nature Communications | 10.1038/s41467-021-22244-7 | brain_imaging; fMRI; human; visual |
Using goal-driven deep learning models to understand sensory cortex | Yamins, Daniel L. K.; DiCarlo, James J. | 2016 | Nature Neuroscience | 10.1038/nn.4244 | brain_imaging; review |
Performance-optimized hierarchical models predict neural responses in higher visual cortex | Yamins, Daniel L. K.; Hong, Ha; Cadieu, Charles F.; Solomon, Ethan A.; Seibert, Darren; DiCarlo, James J. | 2014 | Proceedings of the National Academy of Sciences of the United States of America | 10.1073/pnas.1403112111 | brain_imaging; electrophysiology; monkey; visual |
Efficient inverse graphics in biological face processing | Yildirim, Ilker; Belledonne, Mario; Freiwald, Winrich; Tenenbaum, Joshua B. | 2020 | Science Advances | 10.1126/sciadv.aax5979 | behavior; human; visual |
An integrative computational architecture for object-driven cortex | Yildirim, Ilker; Wu, Jiajun; Kanwisher, Nancy; Tenenbaum, Joshua B. | 2019 | Current Opinion in Neurobiology | 10.1016/j.conb.2019.01.010 | brain_imaging; fMRI; human; visual |
A critique of pure learning and what artificial neural networks can learn from animal brains | Zador, Anthony M. | 2019 | Nature Communications | 10.1038/s41467-019-11786-6 | human; review; visual |
Orthogonal Representations of Object Shape and Category in Deep Convolutional Neural Networks and Human Visual Cortex | Zeman, Astrid A.; Ritchie, J. Brendan; Bracci, Stefania; Op de Beeck, Hans | 2020 | Scientific Reports | 10.1038/s41598-020-59175-0 | brain_imaging; fMRI; human; visual |
Continual learning of context-dependent processing in neural networks | Zeng, Guanxiong; Chen, Yang; Cui, Bo; Yu, Shan | 2019 | Nature Machine Intelligence | 10.1038/s42256-019-0080-x | behavior; human; semantic; visual |
Constraint-Free Natural Image Reconstruction From fMRI Signals Based on Convolutional Neural Network | Zhang, Chi; Qiao, Kai; Wang, Linyuan; Tong, Li; Zeng, Ying; Yan, Bin | 2018 | Frontiers in Human Neuroscience | 10.3389/fnhum.2018.00242 | brain_imaging; fMRI; human; visual |
Humans can decipher adversarial images | Zhou, Zhenglong; Firestone, Chaz | 2019 | Nature Communications | 10.1038/s41467-019-08931-6 | behavior; human; visual |
Robustness of Object Recognition under Extreme Occlusion in Humans and Computational Models | Zhu, Hongru; Tang, Peng; Park, Jeongho; Park, Soojin; Yuille, Alan | 2019 | arXiv | 1905.04598v2 | brain_imaging; human; visual |
Deep Learning Predicts Correlation between a Functional Signature of Higher Visual Areas and Sparse Firing of Neurons | Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel L. K.; Hu, Xiaolin | 2017 | Frontiers in Computational Neuroscience | 10.3389/fncom.2017.00100 | brain_imaging; visual |
Unsupervised neural network models of the ventral visual stream | Zhuang, Chengxu; Yan, Siming; Nayebi, Aran; Schrimpf, Martin; Frank, Michael C.; DiCarlo, James J.; Yamins, Daniel L. K. | 2021 | Proceedings of the National Academy of Sciences of the United States of America | 10.1073/pnas.2014196118 | behavior; electrophysiology; monkey; visual |
How Well do Feature Visualizations Support Causal Understanding of CNN Activations? | Zimmermann, Roland S.; Borowski, Judy; Geirhos, Robert; Bethge, Matthias; Wallis, Thomas S. A.; Brendel, Wieland | 2021 | arXiv | 2106.12447v2 | brain_imaging; human; visual |
Qualitative similarities and differences in visual object representations between brains and deep networks | Jacob,Georgin ; R. T., Pramod; Katti, Harish; S. P., Arun; | 2021 | Nature Communications | 10.1038/s41467-021-22078-3 | deep networks, perception |
Data-driven computational models reveal perceptual simulation in word processing | Petilli, Marco A.; Günther, Fritz; Vergallito, Alessandra; Ciapparelli, Marco; Marelli, Marco | 2021 | Journal of Memory and Language | 10.1016/j.jml.2020.104194 | behavior, human, semantic, visual |
Semantic transparency is not invisibility: A computational model of perceptually-grounded conceptual combination in word processing | Günther, Fritz; Petilli, Marco A.; Marelli, Marco | 2020 | Journal of Memory and Language | 10.1016/j.jml.2020.104104 | behavior, human, semantic, visual |
Images of the unseen: extrapolating visual representations for abstract and concrete words in a data-driven computational model | Günther, Fritz; Petilli, Marco A.; Vergallito, Alessandra; Marelli, Marco | 2020 | Psychological Research | 10.1007/s00426-020-01429-7 | behavior, human, semantic, visual |
Unveiling functions of the visual cortex using task-specific deep neural networks | Dwivedi, Kshitij; Bonner, Michael F.; Cichy, Radoslaw Martin; Gemma Roig | 2021 | PLOS Computational Biology | 10.1371/journal.pcbi.1009267 | |
A unified theory of early visual representations from retina to cortex through anatomically constrained deep cnNs | Lindsey, Jack; Ocko, Samuel A.; Ganguli, Surya; Deny, Stephane | 2019 | BioRxiv | 10.1101/511535 | |
But Still It Moves: Static Image Statistics Underlie How We See Motion | Rideaux, Reuben;Welchman, Andrew E. | 2020 | Journal of Neuroscience | 10.1523/JNEUROSCI.2760-19.2020 | |
Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence | Schrimpf, Martin; Kubilius, Jonas; Lee, Michael J.; Ratan Murty, N. Apurva; Ajemian, Robert; DiCarlo, James J. | 2020 | Neuron | 10.1016/j.neuron.2020.07.040 | behavior, electrophysiology, human, monkey, visual, review |
The neural architecture of language: Integrative modeling converges on predictive processing | Schrimpf, Martin; Blank, Idan Asher; Tuckute, Greta; Kauf, Carina; Hosseini, Eghbal A.; Kanwisher, Nancy; Tenenbaum, Joshua B.; Fedorenko, Evelina | 2021 | Proceedings of the National Academy of Sciences (PNAS) | 10.1073/pnas.2105646118 | behavior, brain_imaging, EEG, fMRI, human, learning |
Wiring Up Vision: Minimizing Supervised Synaptic Updates Needed to Produce a Primate Ventral Stream | Geiger, Franziska; Schrimpf, Martin; Marques, Tiago; DiCarlo, James J. | 2020 | bioRxiv | 10.1101/2020.06.08.140111https://www.biorxiv.org/content/10.1101/2020.06.08.140111v1 | behavior, electrophysiology, human, monkey, visual, backpropagation, learning |
The Algonauts Project 2021 Challenge: How the Human Brain Makes Sense of a World in Motion | Cichy, Radoslaw Martin; Dwivedi, Kshitij; Lahner, Benjamin; Lascelles, Alex; Iamshchinina, Polina; Graumann, Monika; Andonian, Alex; Ratan Murty, N Apurva; Kay, Kendrick; Roig, Gemma; Oliva, Aude | 2021 | arXiv | https://arxiv.org/abs/2104.13714v1 | brain_imaging, MEG, fMRI, human, visual |
Deep neural networks and visuo-semantic models explain complementary components of human ventral-stream representational dynamics | Jozwik, K. M., Kietzmann, T. C., Cichy, R. M., Kriegeskorte, N., & Mur, M. | 2021 | bioRxiv | https://www.biorxiv.org/content/10.1101/2021.10.25.465583v1 | brain_imaging, MEG, human, visual |
Generative Adversarial Phonology: Modeling Unsupervised Phonetic and Phonological Learning With Neural Networks | Beguš, Gašper | 2020 | Frontiers in Artificial Intelligence | 10.3389/frai.2020.00044 | behavior, human, learning |
Local and non-local dependency learning and emergence of rule-like representations in speech data by deep convolutional generative adversarial networks | Beguš, Gašper | 2022 | Computer Speech & Language | 10.1016/j.csl.2021.101244 | behavior, human, learning |
Not so fast: Limited validity of deep convolutional neural networks as in silico models for human naturalistic face processing | Jiahui, Guo; Feilong, Ma; Visconti di Oleggio Castello, Matteo; Nastase, Samuel A.; Haxby, James V.; Gobbini, M. Ida | 2021 | bioRxiv | 10.1101/2021.11.17.469009 | behavior, brain_imaging, fMRI, human, visual |
Grounding deep neural network predictions of human categorization behavior in understandable functional features: The case of face identity | Daube, Christoph; Xu, Tian; Zhan, Jiayu; Webb, Andrew; Ince, Robin A. A.; Garrod, Oliver G. B.; Schyns, Philippe | 2021 | Patterns | 10.1016/j.patter.2021.100348 | behavior, human, visual |
A self-supervised deep neural network for image completion resembles early visual cortex fMRI activity patterns for occluded scenes | Svanera, Michele; Morgan, Andrew T; Petro, Lucy S; Muckli, Lars | 2021 | Journal of Vision | 10.1167/jov.21.7.5 | deep learning, self-supervised learning, fMRI |
Brain-like functional specialization emerges spontaneously in deep neural networks | Dobs, Katharina; Martinez, Julio; Kell, Alexander; Kanwisher, Nancy | 2022 | Science Advances | 10.1126/sciadv.abl8913 | deep learning, fMRI |
From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction | Tanaka, Hidenori; Nayebi, Aran; Maheswaranathan, Niru; McIntosh, Lane; Baccus, Stephen; Ganguli, Surya | 2019 | NeurIPS | https://proceedings.neurips.cc/paper/2019/file/eeaebbffb5d29ff62799637fc51adb7b-Paper.pdf | |
Comparing Object Recognition in Humans and Deep Convolutional Neural Networks – An Eye Tracking Study | van Dyck, Leonard E.; Kwitt, Roland; Denzler, Sebastian J.; Gruber, Walter R. | 2021 | Frontiers in Neuroscience | 10.3389/fnins.2021.750639 | behavior, human, visual |
Guiding Visual Attention in Deep Convolutional Neural Networks Based on Human Eye Movements. | van Dyck, Leonard E.; Denzler, Sebastian J.; Gruber, Walter R. | 2022 | arxiv | 10.48550/arxiv.2206.10587 | behavior, human, visual |